TITLE CA1CaG.mod - generic HVA Ca COMMENT From Warman, Durand and Yuen J. Neurophys. 71:2033-2045, 1994 Based on Kay and Wong (1987) data. As used by Lipowsky et al (1996) with fixed ECa BPG 29-10-99 Scaling of inactivation time constant (tc) added BPG 5-1-01 ENDCOMMENT UNITS { (mA) = (milliamp) (mV) = (millivolt) } NEURON { SUFFIX CA1CaG USEION ca WRITE ica RANGE gcabar,gca,ica GLOBAL minf, hinf, mexp, hexp, tc } INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} PARAMETER { v (mV) celsius = 36 (degC) dt (ms) gcabar = 0.01 (mho/cm2) eca = 80 (mV) tc = 1 (1) } STATE { m h } ASSIGNED { ica (mA/cm2) minf hinf mexp hexp } BREAKPOINT { SOLVE states ica = gcabar*m*m*h*(v - eca) } UNITSOFF INITIAL { rates(v) m = minf h = hinf } PROCEDURE states() { :Computes state variables m, h rates(v) : at the current v and dt. m = m + mexp*(minf-m) h = h + hexp*(hinf-h) } PROCEDURE rates(v) { :Computes rate and other constants at current v. :Call once from HOC to initialize inf at resting v. LOCAL alpha, beta, sum TABLE minf, mexp, hinf, hexp DEPEND dt, tc FROM -100 TO 100 WITH 200 :"m" calcium activation system alpha = -0.16 * vtrap(v+26,-4.5) beta = 0.04 * vtrap(v+12,10) sum = alpha + beta minf = alpha/sum mexp = 1 - exp(-dt*sum) :"h" calcium inactivation system alpha = 2 / exp((v+94)/10) beta = 8 / (exp(-(v-68)/27) + 1) sum = alpha + beta hinf = alpha/sum hexp = 1 - exp(-dt*sum/tc) } FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns. if (fabs(x/y) < 1e-6) { vtrap = y*(1 - x/y/2) }else{ vtrap = x/(exp(x/y) - 1) } } UNITSON