% Compare length constants of simulated Ca2+-inhibition for different % model parameters % --- % Fiona Müllner, MPI Neurobiology % Email: fiona.muellner at gmail.com clearvars -except rootfolder space = 5; fitsingle = 0; cd(sprintf('%s\\CA1_multi\\experiment\\mul2',rootfolder)) figure NeuronSim_Summary subplot(2,1,1) tempx=[]; tempy=[]; xl=get(gca,'xlim'); xl=round(xl/space)*space; for i=1:length(newx) s = find((diff(newx{1,i})==0).*(diff(resultv{1,i})==0)==0); newx{1,i}=newx{1,i}(s); resultv{1,i}=resultv{1,i}(s); if fitsingle sel1=(~isnan(resultv{1,i})).*(newx{1,i}>=0)==1; if sum(sel1)>1 estimates1 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates1 = NaN; end sel1=(~isnan(resultv{1,i})).*(newx{1,i}<=0)==1; if sum(sel1)>1 estimates2 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates2 = NaN; end k(1,i,1:2) = [1/estimates1,-1/estimates2]; end tempy=[tempy,interp1(newx{1,i},resultv{1,i},xl(1):space:xl(2))]; tempx=[tempx,xl(1):space:xl(2)]; end newx=tempx; resultv=tempy; sel1=(~isnan(resultv)).*(newx>=0)==1; if sum(sel1)>1 [estimates1, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot([0:200],exp(-[0:200]*estimates1),'k-','LineWidth',2) else estimates1 = NaN; end sel1=(~isnan(resultv)).*(newx<=0)==1; if sum(sel1)>1 [estimates2, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot(-[0:1000],exp([0:1000]*estimates2),'k-','LineWidth',2) else estimates2 = NaN; end text(-1000,0.7,sprintf('distal %1.1f um, proximal %1.1f um',1/estimates1,-1/estimates2)) title('mul2') h(1,:)=[1/estimates1,-1/estimates2]; cd(sprintf('%s\\CA1_multi\\experiment\\regular',rootfolder)) figure NeuronSim_Summary subplot(2,1,1) tempx=[]; tempy=[]; xl=get(gca,'xlim'); xl=round(xl/space)*space; for i=1:length(newx) s = find((diff(newx{1,i})==0).*(diff(resultv{1,i})==0)==0); newx{1,i}=newx{1,i}(s); resultv{1,i}=resultv{1,i}(s); if fitsingle sel1=(~isnan(resultv{1,i})).*(newx{1,i}>=0)==1; if sum(sel1)>1 estimates1 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates1 = NaN; end sel1=(~isnan(resultv{1,i})).*(newx{1,i}<=0)==1; if sum(sel1)>1 estimates2 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates2 = NaN; end k(2,i,1:2) = [1/estimates1,-1/estimates2]; end tempy=[tempy,interp1(newx{1,i},resultv{1,i},xl(1):space:xl(2))]; tempx=[tempx,xl(1):space:xl(2)]; end newx=tempx; resultv=tempy; sel1=(~isnan(resultv)).*(newx>=0)==1; if sum(sel1)>1 [estimates1, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot([0:200],exp(-[0:200]*estimates1),'k-','LineWidth',2) else estimates1 = NaN; end sel1=(~isnan(resultv)).*(newx<=0)==1; if sum(sel1)>1 [estimates2, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot(-[0:500],exp([0:500]*estimates2),'k-','LineWidth',2) else estimates2 = NaN; end text(-500,0.7,sprintf('distal %1.1f um, proximal %1.1f um',1/estimates1,-1/estimates2)) title('regular') h(2,:)=[1/estimates1,-1/estimates2]; cd(sprintf('%s\\CA1_multi\\experiment\\div2',rootfolder)) figure NeuronSim_Summary subplot(2,1,1) tempx=[]; tempy=[]; xl=get(gca,'xlim'); xl=round(xl/space)*space; for i=1:length(newx) s = find((diff(newx{1,i})==0).*(diff(resultv{1,i})==0)==0); newx{1,i}=newx{1,i}(s); resultv{1,i}=resultv{1,i}(s); if fitsingle sel1=(~isnan(resultv{1,i})).*(newx{1,i}>=0)==1; if sum(sel1)>1 estimates1 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates1 = NaN; end sel1=(~isnan(resultv{1,i})).*(newx{1,i}<=0)==1; if sum(sel1)>1 estimates2 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates2 = NaN; end k(3,i,1:2) = [1/estimates1,-1/estimates2]; end tempy=[tempy,interp1(newx{1,i},resultv{1,i},xl(1):space:xl(2))]; tempx=[tempx,xl(1):space:xl(2)]; end newx=tempx; resultv=tempy; sel1=(~isnan(resultv)).*(newx>=0)==1; if sum(sel1)>1 [estimates1, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot([0:100],exp(-[0:100]*estimates1),'k-','LineWidth',2) else estimates1 = NaN; end sel1=(~isnan(resultv)).*(newx<=0)==1; if sum(sel1)>1 [estimates2, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot(-[0:250],exp([0:250]*estimates2),'k-','LineWidth',2) else estimates2 = NaN; end text(-250,0.7,sprintf('distal %1.1f um, proximal %1.1f um',1/estimates1,-1/estimates2)) title('div2') h(3,:)=[1/estimates1,-1/estimates2]; cd(sprintf('%s\\CA1_multi\\experiment\\spinesadded',rootfolder)) figure NeuronSim_Summary subplot(2,1,1) tempx=[]; tempy=[]; xl=get(gca,'xlim'); xl=round(xl/space)*space; for i=1:length(newx) s = find((diff(newx{1,i})==0).*(diff(resultv{1,i})==0)==0); newx{1,i}=newx{1,i}(s); resultv{1,i}=resultv{1,i}(s); if fitsingle sel1=(~isnan(resultv{1,i})).*(newx{1,i}>=0)==1; if sum(sel1)>1 estimates1 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates1 = NaN; end sel1=(~isnan(resultv{1,i})).*(newx{1,i}<=0)==1; if sum(sel1)>1 estimates2 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates2 = NaN; end k(6,i,1:2) = [1/estimates1,-1/estimates2]; end tempy=[tempy,interp1(newx{1,i},resultv{1,i},xl(1):space:xl(2))]; tempx=[tempx,xl(1):space:xl(2)]; end newx=tempx; resultv=tempy; sel1=(~isnan(resultv)).*(newx>=0)==1; if sum(sel1)>1 [estimates1, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot([0:100],exp(-[0:100]*estimates1),'k-','LineWidth',2) else estimates1 = NaN; end sel1=(~isnan(resultv)).*(newx<=0)==1; if sum(sel1)>1 [estimates2, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot(-[0:250],exp([0:250]*estimates2),'k-','LineWidth',2) else estimates2 = NaN; end text(-250,0.7,sprintf('distal %1.1f um, proximal %1.1f um',1/estimates1,-1/estimates2)) title('spinesadded') h(4,:)=[1/estimates1,-1/estimates2]; cd(sprintf('%s\\CA1_multi\\experiment\\smalltau',rootfolder)) figure NeuronSim_Summary subplot(2,1,1) tempx=[]; tempy=[]; xl=get(gca,'xlim'); xl=round(xl/space)*space; for i=1:length(newx) s = find((diff(newx{1,i})==0).*(diff(resultv{1,i})==0)==0); newx{1,i}=newx{1,i}(s); resultv{1,i}=resultv{1,i}(s); if fitsingle sel1=(~isnan(resultv{1,i})).*(newx{1,i}>=0)==1; if sum(sel1)>1 estimates1 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates1 = NaN; end sel1=(~isnan(resultv{1,i})).*(newx{1,i}<=0)==1; if sum(sel1)>1 estimates2 = exp_nooffset2(newx{1,i}(sel1),resultv{1,i}(sel1)); else estimates2 = NaN; end k(2,i,1:2) = [1/estimates1,-1/estimates2]; end tempy=[tempy,interp1(newx{1,i},resultv{1,i},xl(1):space:xl(2))]; tempx=[tempx,xl(1):space:xl(2)]; end newx=tempx; resultv=tempy; sel1=(~isnan(resultv)).*(newx>=0)==1; if sum(sel1)>1 [estimates1, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot([0:200],exp(-[0:200]*estimates1),'k-','LineWidth',2) else estimates1 = NaN; end sel1=(~isnan(resultv)).*(newx<=0)==1; if sum(sel1)>1 [estimates2, model] = exp_nooffset2(newx(sel1),resultv(sel1)); plot(-[0:500],exp([0:500]*estimates2),'k-','LineWidth',2) else estimates2 = NaN; end text(-500,0.7,sprintf('distal %1.1f um, proximal %1.1f um',1/estimates1,-1/estimates2)) title('smalltau') h(5,:)=[1/estimates1,-1/estimates2]; figure plot([2,1,0.5],h(1:3,1),'bo-') hold all plot([2,1,0.5],h(1:3,2),'c^-') plot(1,h(4,1),'om') plot(1,h(5,1),'og') plot(1,h(4,2),'^m') plot(1,h(5,2),'^g') xlim([0,2.5]) legend('regular prox','regular dist','spines 0.5','tau0.5')