import matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 mfs=22 matplotlib.rc('xtick', labelsize=mfs) matplotlib.rc('ytick', labelsize=mfs) matplotlib.rc('axes', labelsize=mfs) from pylab import * import numpy as np import re import os datadir = 'N400.B20.I12.i1.P2.p6.T60.S1980.sc_sim0' RUNSTATS = 0 datadir = datadir.replace('./data/', ''); datadir = datadir.replace('data/', ''); savedir = datadir p = re.match(r'N(\d+).B(\d+).I(\d+).i(\d+).P(\d+).p(\d+).T(\d+).S(\d+).(.*)', datadir) RSEED = int(p.group(8)) NTOTAL = int(p.group(1)) #inh + pyr neurons NBRANCHES = int(p.group(2)) NINPUTS = int(p.group(3)) NPERINPUT = int(p.group(4)) NPATTERNS = int(p.group(5)) NPERPATTERN = int(p.group(6)) INTERSTIM = int(p.group(7)) NPYR = int(0.8*NTOTAL) PYR_IDS = range(0 , NPYR) IN_IDS = range(NPYR, NTOTAL) suff = p.group(9) NRUNS = 10 if (1): bp = zeros((6, 4, NRUNS) ) n1 = 0 figure() for sim in [1,2,3,4,5,6]: n2 = 0 pp = [] pe = [] for itvl in [60, 120, 180, 300]: for i in range(0,NRUNS): ddir = "N%d.B%d.I%d.i%d.P%d.p%d.T%d.S%d.sn_sim%d"%(NTOTAL, NBRANCHES, NINPUTS, NPERINPUT, NPATTERNS, NPERPATTERN, itvl, RSEED+i, sim) dd = np.load("./data/%s/spcountscorr.npy"%(ddir)) bp[n1, n2, i] = dd[0,1] pp.append( np.average(bp[n1,n2]) ) pe.append( np.std(bp[n1,n2])) n2 += 1 h = errorbar(range(len(pp)), pp, yerr=pe, label="%d %%"%(100*(6-sim)/6)) ylim(-0.1, 1.2) legend() n1 += 1 lab = ["1 hour","2 hours", "3 hours", "5 hours"] xticks(range(len(pp)), lab) legend(loc="center right") xlim(-0.2, 4.2) show()