TITLE Cerebellum Granule Cell Model COMMENT basato sul modello di Raman a 13 stati. genera corrente di sodio transiente, persistente e risorgente with Long-Term Inactivation States L3,L4,L5,L6. and Vshift = -10mV ENDCOMMENT NEURON { SUFFIX GRC_NA USEION na READ ena WRITE ina RANGE gnabar, ina, g RANGE alfa, beta, gamma, delta, epsilon, teta, Con, Coff, Oon, Ooff, Lon, Loff RANGE Aalfa, Valfa, Abeta, Vbeta, Ateta, Vteta, Agamma, Adelta, Aepsilon, ACon, ACoff, AOon, AOoff, ALon, ALoff, Vshift RANGE n1, n2, n3, n4, c, d, V_threshold, use_threshold } UNITS { (mA) = (milliamp) (mV) = (millivolt) } PARAMETER { v (mV) Vshift = -10 (mV) celsius = 20 (degC) ena = 87.39 (mV) gnabar = 0.013 (mho/cm2) Aalfa = 353.91 ( /ms) Valfa = 13.99 ( /mV) Abeta = 1.272 ( /ms) Vbeta = 13.99 ( /mV) Agamma = 150 ( /ms) Adelta = 40 ( /ms) Aepsilon = 1.75 ( /ms) Ateta = 0.0201 ( /ms) Vteta = 25 ACon = 0.5 ( /ms) ACoff = 0.5 ( /ms) AOon = 7.5 ( /ms) AOoff = 0.0005 ( /ms) ALon = 0 ( /ms) ALoff = 1000 ( /ms) n1 = 5.422 n2 = 3.279 n3 = 1.83 n4 = 0.738 c = 20 d = 0.075 V_threshold = -65 (mV) use_threshold = 1 } ASSIGNED { ina (mA/cm2) g (mho/cm2) gamma delta epsilon Con Coff Oon Ooff Lon Loff a b Q10 } STATE { C1 C2 C3 C4 C5 O OB I1 I2 I3 I4 I5 I6 L3 L4 L5 L6 } INITIAL { C1=1 C2=0 C3=0 C4=0 C5=0 O=0 OB=0 I1=0 I2=0 I3=0 I4=0 I5=0 I6=0 L3=0 L4=0 L5=0 L6=0 Q10 =3^((celsius-20(degC))/10 (degC)) gamma = Q10 * Agamma delta = Q10 * Adelta epsilon = Q10 * Aepsilon Con = Q10 * ACon Coff = Q10 * ACoff Oon = Q10 * AOon Ooff = Q10 * AOoff Lon = Q10 * ALon Loff = Q10 * ALoff a = (Oon/Con)^0.25 b = (Ooff/Coff)^0.25 } BREAKPOINT { if ( use_threshold ) { if (v < V_threshold) { delta = 1e10 gamma = 1e-10 :printf("%f\t",v) } else { delta = Q10 * Adelta gamma = Q10 * Agamma } } SOLVE kstates METHOD sparse g = gnabar * O : (mho/cm2) ina = g * (v - ena) : (mA/cm2) } FUNCTION alfa(v(mV))(/ms){ alfa = Q10*Aalfa*exp((v-Vshift)/Valfa) } FUNCTION beta(v(mV))(/ms){ beta = Q10*Abeta*exp((-v+Vshift)/Vbeta) } FUNCTION teta(v(mV))(/ms){ teta = Q10*Ateta*exp(-v/Vteta) } KINETIC kstates { : 1 riga ~ C1 <-> C2 (n1*alfa(v),n4*beta(v)) ~ C2 <-> C3 (n2*alfa(v),n3*beta(v)) ~ C3 <-> C4 (n3*alfa(v),n2*beta(v)) ~ C4 <-> C5 (n4*alfa(v),n1*beta(v)) ~ C5 <-> O (gamma,delta) ~ O <-> OB (epsilon,teta(v)) : 2 riga ~ I1 <-> I2 (n1*alfa(v)*a,n4*beta(v)*b) ~ I2 <-> I3 (n2*alfa(v)*a,n3*beta(v)*b) ~ I3 <-> I4 (n3*alfa(v)*a,n2*beta(v)*b) ~ I4 <-> I5 (n4*alfa(v)*a,n1*beta(v)*b) ~ I5 <-> I6 (gamma,delta) : 3 riga ~ L3 <-> L4 (n3*alfa(v)*c,n2*alfa(v)*d) ~ L4 <-> L5 (n4*alfa(v)*c,n1*alfa(v)*d) ~ L5 <-> L6 (gamma,delta) : connette 1 riga con 2 riga ~ C1 <-> I1 (Con,Coff) ~ C2 <-> I2 (Con*a,Coff*b) ~ C3 <-> I3 (Con*a^2,Coff*b^2) ~ C4 <-> I4 (Con*a^3,Coff*b^3) ~ C5 <-> I5 (Con*a^4,Coff*b^4) ~ O <-> I6 (Oon,Ooff) : connette 1 riga con 3 riga ~ C3 <-> L3 (Lon,Loff) ~ C4 <-> L4 (Lon*c,Loff*d) ~ C5 <-> L5 (Lon*c^2,Loff*d^2) ~ O <-> L6 (Lon*c^2,Loff*d^2) CONSERVE C1+C2+C3+C4+C5+O+OB+I1+I2+I3+I4+I5+I6+L3+L4+L5+L6=1 }