import os from brian import * from brian.library.ionic_currents import * from brian.library.IF import * import numpy as np import random as pyrandom def input_patterns(trial_i): reinit(states = True) clear(erase = True, all = True) if not os.path.exists('input_patterns'): os.makedirs('input_patterns') os.chdir('input_patterns') Trial = trial_i[0] # Initial pattern scale_fac = 2 if not os.path.exists('scale_'+str(scale_fac)): os.makedirs('scale_'+str(scale_fac)) os.chdir('scale_'+str(scale_fac)) N_input = 100 * scale_fac d_input = 0.10 # active input density if not os.path.exists('d_input_'+str(d_input)): os.makedirs('d_input_'+str(d_input)) os.chdir('d_input_'+str(d_input)) # Active pattern of neurons active = sorted(pyrandom.sample(xrange(N_input), int(d_input*N_input))) np.save('active_pattern_'+str(Trial)+'.npy', active) return jobidx = int(sys.argv[1]) results = input_patterns([jobidx]) # launches multiple processes