__author__ = 'milsteina' from specify_cells import * import random import os """ Builds a cell locally so each engine is ready to receive jobs one at a time, specified by an index corresponding to which synapse to stimulate (all spines), for comparing Expected to Actual depolarization. """ morph_filename = 'EB2-late-bifurcation.swc' # exponential ampar conductance gradient applied to trunk; inheritance applied to apical and tuft; constant basal mech_filename = '043016 Type A - km2_NMDA_KIN5_Pr' rec_filename = 'output'+datetime.datetime.today().strftime('%m%d%Y%H%M')+'-pid'+str(os.getpid()) def stimulate_single_synapse(syn_index): """ :param syn_index: int :return: str """ start_time = time.time() syn = syn_list[syn_index] spine = syn.node branch = spine.parent.parent sim.modify_rec(2, branch) sim.parameters['spine_index'] = spine.index syn.source.play(spike_times) sim.run(v_init) with h5py.File(data_dir+rec_filename+'.hdf5', 'a') as f: sim.export_to_file(f, syn_index) syn.source.play(h.Vector()) # playing an empty vector turns this synapse off for future runs while keeping the # VecStim source object in existence so it can be activated again print 'Process:', os.getpid(), 'completed Iteration:', syn_index, 'Spine:', syn.node.index, 'Node:', \ syn.node.parent.parent.name, 'in %.3f s' % (time.time() - start_time) return rec_filename equilibrate = 250. # time to steady-state duration = 450. v_init = -67. syn_types = ['AMPA_KIN', 'NMDA_KIN'] syn_list = [] cell = CA1_Pyr(morph_filename, mech_filename, full_spines=True) random.seed(0) for branch in cell.basal+cell.trunk+cell.apical+cell.tuft: for spine in branch.spines: syn = Synapse(cell, spine, syn_types, stochastic=0) syn_list.append(syn) cell.init_synaptic_mechanisms() sim = QuickSim(duration, verbose=False) sim.parameters['equilibrate'] = equilibrate sim.parameters['duration'] = duration sim.append_rec(cell, cell.tree.root, description='soma') # look for a trunk bifurcation trunk_bifurcation = [trunk for trunk in cell.trunk if cell.is_bifurcation(trunk, 'trunk')] if trunk_bifurcation: trunk_branches = [branch for branch in trunk_bifurcation[0].children if branch.type == 'trunk'] # get where the thickest trunk branch gives rise to the tuft trunk = max(trunk_branches, key=lambda node: node.sec(0.).diam) trunk = (node for node in cell.trunk if cell.node_in_subtree(trunk, node) and 'tuft' in (child.type for child in node.children)).next() else: trunk_bifurcation = [node for node in cell.trunk if 'tuft' in (child.type for child in node.children)] trunk = trunk_bifurcation[0] sim.append_rec(cell, trunk, 0., description='trunk') sim.append_rec(cell, trunk, description='branch') # placeholder for branch spike_times = h.Vector([equilibrate])