/* Created by Language version: 6.2.0 */ /* NOT VECTORIZED */ #define NRN_VECTORIZED 0 #include #include #include #include "scoplib_ansi.h" #undef PI #define nil 0 #include "md1redef.h" #include "section.h" #include "nrniv_mf.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #if !NRNGPU #undef exp #define exp hoc_Exp extern double hoc_Exp(double); #endif #define nrn_init _nrn_init__GLU #define _nrn_initial _nrn_initial__GLU #define nrn_cur _nrn_cur__GLU #define _nrn_current _nrn_current__GLU #define nrn_jacob _nrn_jacob__GLU #define nrn_state _nrn_state__GLU #define _net_receive _net_receive__GLU #define release release__GLU #define _threadargscomma_ /**/ #define _threadargsprotocomma_ /**/ #define _threadargs_ /**/ #define _threadargsproto_ /**/ /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); static double *_p; static Datum *_ppvar; #define t nrn_threads->_t #define dt nrn_threads->_dt #define iglu _p[0] #define g _p[1] #define gmax _p[2] #define Ron _p[3] #define Roff _p[4] #define synon _p[5] #define DRon _p[6] #define DRoff _p[7] #define _g _p[8] #define _tsav _p[9] #define _nd_area *_ppvar[0]._pval #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif #if defined(__cplusplus) extern "C" { #endif static int hoc_nrnpointerindex = -1; /* external NEURON variables */ /* declaration of user functions */ static int _mechtype; extern void _nrn_cacheloop_reg(int, int); extern void hoc_register_prop_size(int, int, int); extern void hoc_register_limits(int, HocParmLimits*); extern void hoc_register_units(int, HocParmUnits*); extern void nrn_promote(Prop*, int, int); extern Memb_func* memb_func; extern Prop* nrn_point_prop_; static int _pointtype; static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process(); return create_point_process(_pointtype, _ho); } static void _hoc_destroy_pnt(); static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process(); return loc_point_process(_pointtype, _vptr); } static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point(); return has_loc_point(_vptr); } static double _hoc_get_loc_pnt(_vptr)void* _vptr; { double get_loc_point_process(); return (get_loc_point_process(_vptr)); } extern void _nrn_setdata_reg(int, void(*)(Prop*)); static void _setdata(Prop* _prop) { _p = _prop->param; _ppvar = _prop->dparam; } static void _hoc_setdata(void* _vptr) { Prop* _prop; _prop = ((Point_process*)_vptr)->_prop; _setdata(_prop); } /* connect user functions to hoc names */ static VoidFunc hoc_intfunc[] = { 0,0 }; static Member_func _member_func[] = { "loc", _hoc_loc_pnt, "has_loc", _hoc_has_loc, "get_loc", _hoc_get_loc_pnt, 0, 0 }; /* declare global and static user variables */ #define Alpha Alpha_GLU double Alpha = 10; #define Beta Beta_GLU double Beta = 0.11; #define Cmax Cmax_GLU double Cmax = 1; #define Cdur Cdur_GLU double Cdur = 0.3; #define Erev Erev_GLU double Erev = 0; #define Rtau Rtau_GLU double Rtau = 0; #define Rinf Rinf_GLU double Rinf = 0; /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "Cmax_GLU", "mM", "Cdur_GLU", "ms", "Alpha_GLU", "/ms", "Beta_GLU", "/ms", "Erev_GLU", "mV", "Rtau_GLU", "ms", "iglu", "nA", "g", "umho", 0,0 }; static double Roff0 = 0; static double Ron0 = 0; static double delta_t = 0.01; static double v = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { "Cmax_GLU", &Cmax_GLU, "Cdur_GLU", &Cdur_GLU, "Alpha_GLU", &Alpha_GLU, "Beta_GLU", &Beta_GLU, "Erev_GLU", &Erev_GLU, "Rinf_GLU", &Rinf_GLU, "Rtau_GLU", &Rtau_GLU, 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static void nrn_alloc(Prop*); static void nrn_init(_NrnThread*, _Memb_list*, int); static void nrn_state(_NrnThread*, _Memb_list*, int); static void nrn_cur(_NrnThread*, _Memb_list*, int); static void nrn_jacob(_NrnThread*, _Memb_list*, int); static void _hoc_destroy_pnt(_vptr) void* _vptr; { destroy_point_process(_vptr); } static int _ode_count(int); static void _ode_map(int, double**, double**, double*, Datum*, double*, int); static void _ode_spec(_NrnThread*, _Memb_list*, int); static void _ode_matsol(_NrnThread*, _Memb_list*, int); #define _cvode_ieq _ppvar[3]._i static void _ode_matsol_instance1(_threadargsproto_); /* connect range variables in _p that hoc is supposed to know about */ static const char *_mechanism[] = { "6.2.0", "GLU", 0, "iglu", "g", "gmax", 0, "Ron", "Roff", 0, 0}; extern Prop* need_memb(Symbol*); static void nrn_alloc(Prop* _prop) { Prop *prop_ion; double *_p; Datum *_ppvar; if (nrn_point_prop_) { _prop->_alloc_seq = nrn_point_prop_->_alloc_seq; _p = nrn_point_prop_->param; _ppvar = nrn_point_prop_->dparam; }else{ _p = nrn_prop_data_alloc(_mechtype, 10, _prop); /*initialize range parameters*/ } _prop->param = _p; _prop->param_size = 10; if (!nrn_point_prop_) { _ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop); } _prop->dparam = _ppvar; /*connect ionic variables to this model*/ } static void _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; #define _tqitem &(_ppvar[2]._pvoid) static void _net_receive(Point_process*, double*, double); extern Symbol* hoc_lookup(const char*); extern void _nrn_thread_reg(int, int, void(*)(Datum*)); extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int)); extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***); extern void _cvode_abstol( Symbol**, double*, int); void _ampa_reg() { int _vectorized = 0; _initlists(); _pointtype = point_register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0, _hoc_create_pnt, _hoc_destroy_pnt, _member_func); _mechtype = nrn_get_mechtype(_mechanism[1]); _nrn_setdata_reg(_mechtype, _setdata); hoc_register_prop_size(_mechtype, 10, 4); hoc_register_dparam_semantics(_mechtype, 0, "area"); hoc_register_dparam_semantics(_mechtype, 1, "pntproc"); hoc_register_dparam_semantics(_mechtype, 2, "netsend"); hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq"); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); pnt_receive[_mechtype] = _net_receive; pnt_receive_size[_mechtype] = 5; hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 GLU /home/cluster/aleka/MainPath/Desktop/FSBC_model/Multicompartmental_Biophysical_models/mechanism/x86_64/ampa.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static int _reset; static char *modelname = "simple AMPA receptors"; static int error; static int _ninits = 0; static int _match_recurse=1; static void _modl_cleanup(){ _match_recurse=1;} static int _ode_spec1(_threadargsproto_); /*static int _ode_matsol1(_threadargsproto_);*/ static int _slist1[2], _dlist1[2]; static int release(_threadargsproto_); /*CVODE*/ static int _ode_spec1 () {_reset=0; { DRon = ( synon * Rinf - Ron ) / Rtau ; DRoff = - Beta * Roff ; } return _reset; } static int _ode_matsol1 () { DRon = DRon / (1. - dt*( ( ( ( - 1.0 ) ) ) / Rtau )) ; DRoff = DRoff / (1. - dt*( ( - Beta )*( 1.0 ) )) ; return 0; } /*END CVODE*/ static int release () {_reset=0; { Ron = Ron + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / Rtau)))*(- ( ( ( ( synon )*( Rinf ) ) ) / Rtau ) / ( ( ( ( - 1.0 ) ) ) / Rtau ) - Ron) ; Roff = Roff + (1. - exp(dt*(( - Beta )*( 1.0 ))))*(- ( 0.0 ) / ( ( - Beta )*( 1.0 ) ) - Roff) ; } return 0; } static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag; { _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam; if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");} _tsav = t; if (_lflag == 1. ) {*(_tqitem) = 0;} { if ( _lflag == 0.0 ) { _args[2] = _args[2] + 1.0 ; if ( ! _args[1] ) { _args[3] = _args[3] * exp ( - Beta * ( t - _args[4] ) ) ; _args[4] = t ; _args[1] = 1.0 ; synon = synon + _args[0] ; if (nrn_netrec_state_adjust && !cvode_active_){ /* discon state adjustment for cnexp case (rate uses no local variable) */ double __state = Ron; double __primary = (Ron + _args[3] ) - __state; __primary += ( 1. - exp( 0.5*dt*( ( ( ( - 1.0 ) ) ) / Rtau ) ) )*( - ( ( ( ( synon )*( Rinf ) ) ) / Rtau ) / ( ( ( ( - 1.0 ) ) ) / Rtau ) - __primary ); Ron += __primary; } else { Ron = Ron + _args[3] ; } if (nrn_netrec_state_adjust && !cvode_active_){ /* discon state adjustment for cnexp case (rate uses no local variable) */ double __state = Roff; double __primary = (Roff - _args[3] ) - __state; __primary += ( 1. - exp( 0.5*dt*( ( - Beta )*( 1.0 ) ) ) )*( - ( 0.0 ) / ( ( - Beta )*( 1.0 ) ) - __primary ); Roff += __primary; } else { Roff = Roff - _args[3] ; } } net_send ( _tqitem, _args, _pnt, t + Cdur , _args[2] ) ; } if ( _lflag == _args[2] ) { _args[3] = _args[0] * Rinf + ( _args[3] - _args[0] * Rinf ) * exp ( - ( t - _args[4] ) / Rtau ) ; _args[4] = t ; synon = synon - _args[0] ; if (nrn_netrec_state_adjust && !cvode_active_){ /* discon state adjustment for cnexp case (rate uses no local variable) */ double __state = Ron; double __primary = (Ron - _args[3] ) - __state; __primary += ( 1. - exp( 0.5*dt*( ( ( ( - 1.0 ) ) ) / Rtau ) ) )*( - ( ( ( ( synon )*( Rinf ) ) ) / Rtau ) / ( ( ( ( - 1.0 ) ) ) / Rtau ) - __primary ); Ron += __primary; } else { Ron = Ron - _args[3] ; } if (nrn_netrec_state_adjust && !cvode_active_){ /* discon state adjustment for cnexp case (rate uses no local variable) */ double __state = Roff; double __primary = (Roff + _args[3] ) - __state; __primary += ( 1. - exp( 0.5*dt*( ( - Beta )*( 1.0 ) ) ) )*( - ( 0.0 ) / ( ( - Beta )*( 1.0 ) ) - __primary ); Roff += __primary; } else { Roff = Roff + _args[3] ; } _args[1] = 0.0 ; } gmax = _args[0] ; } } static int _ode_count(int _type){ return 2;} static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) { Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_spec1 (); }} static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 2; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static void _ode_matsol_instance1(_threadargsproto_) { _ode_matsol1 (); } static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) { Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_matsol_instance1(_threadargs_); }} static void initmodel() { int _i; double _save;_ninits++; _save = t; t = 0.0; { Roff = Roff0; Ron = Ron0; { Rinf = Cmax * Alpha / ( Cmax * Alpha + Beta ) ; Rtau = 1.0 / ( ( Alpha * Cmax ) + Beta ) ; synon = 0.0 ; } _sav_indep = t; t = _save; } } static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){ Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _tsav = -1e20; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; initmodel(); }} static double _nrn_current(double _v){double _current=0.;v=_v;{ { g = ( Ron + Roff ) * 1.0 ; iglu = g * ( v - Erev ) ; } _current += iglu; } return _current; } static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){ Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } _g = _nrn_current(_v + .001); { _rhs = _nrn_current(_v); } _g = (_g - _rhs)/.001; _g *= 1.e2/(_nd_area); _rhs *= 1.e2/(_nd_area); #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } }} static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){ Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } }} static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){ Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v=_v; { { error = release(); if(error){fprintf(stderr,"at line 91 in file ampa.mod:\n SOLVE release METHOD cnexp\n"); nrn_complain(_p); abort_run(error);} }}} } static void terminal(){} static void _initlists() { int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(Ron) - _p; _dlist1[0] = &(DRon) - _p; _slist1[1] = &(Roff) - _p; _dlist1[1] = &(DRoff) - _p; _first = 0; }