/* Created by Language version: 6.2.0 */ /* VECTORIZED */ #define NRN_VECTORIZED 1 #include #include #include #include "scoplib_ansi.h" #undef PI #define nil 0 #include "md1redef.h" #include "section.h" #include "nrniv_mf.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #if !NRNGPU #undef exp #define exp hoc_Exp extern double hoc_Exp(double); #endif #define nrn_init _nrn_init__kdrcb #define _nrn_initial _nrn_initial__kdrcb #define nrn_cur _nrn_cur__kdrcb #define _nrn_current _nrn_current__kdrcb #define nrn_jacob _nrn_jacob__kdrcb #define nrn_state _nrn_state__kdrcb #define _net_receive _net_receive__kdrcb #define rate rate__kdrcb #define states states__kdrcb #define _threadargscomma_ _p, _ppvar, _thread, _nt, #define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, #define _threadargs_ _p, _ppvar, _thread, _nt #define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); /* Thread safe. No static _p or _ppvar. */ #define t _nt->_t #define dt _nt->_dt #define gkdrbar _p[0] #define ik _p[1] #define gk _p[2] #define n _p[3] #define Dn _p[4] #define inf _p[5] #define tau _p[6] #define ek _p[7] #define ki _p[8] #define ko _p[9] #define v _p[10] #define _g _p[11] #define _ion_ki *_ppvar[0]._pval #define _ion_ko *_ppvar[1]._pval #define _ion_ik *_ppvar[2]._pval #define _ion_dikdv *_ppvar[3]._pval #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif #if defined(__cplusplus) extern "C" { #endif static int hoc_nrnpointerindex = -1; static Datum* _extcall_thread; static Prop* _extcall_prop; /* external NEURON variables */ /* declaration of user functions */ static void _hoc_alf(void); static void _hoc_bet(void); static void _hoc_rate(void); static int _mechtype; extern void _nrn_cacheloop_reg(int, int); extern void hoc_register_prop_size(int, int, int); extern void hoc_register_limits(int, HocParmLimits*); extern void hoc_register_units(int, HocParmUnits*); extern void nrn_promote(Prop*, int, int); extern Memb_func* memb_func; extern void _nrn_setdata_reg(int, void(*)(Prop*)); static void _setdata(Prop* _prop) { _extcall_prop = _prop; } static void _hoc_setdata() { Prop *_prop, *hoc_getdata_range(int); _prop = hoc_getdata_range(_mechtype); _setdata(_prop); hoc_retpushx(1.); } /* connect user functions to hoc names */ static VoidFunc hoc_intfunc[] = { "setdata_kdrcb", _hoc_setdata, "alf_kdrcb", _hoc_alf, "bet_kdrcb", _hoc_bet, "rate_kdrcb", _hoc_rate, 0, 0 }; #define alf alf_kdrcb #define bet bet_kdrcb extern double alf( _threadargsprotocomma_ double ); extern double bet( _threadargsprotocomma_ double ); /* declare global and static user variables */ /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { "gkdrbar_kdrcb", 0, 1e+09, 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "gkdrbar_kdrcb", "mho/cm2", "ik_kdrcb", "mA/cm2", "gk_kdrcb", "mho/cm2", 0,0 }; static double delta_t = 1; static double n0 = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static void nrn_alloc(Prop*); static void nrn_init(_NrnThread*, _Memb_list*, int); static void nrn_state(_NrnThread*, _Memb_list*, int); static void nrn_cur(_NrnThread*, _Memb_list*, int); static void nrn_jacob(_NrnThread*, _Memb_list*, int); static int _ode_count(int); static void _ode_map(int, double**, double**, double*, Datum*, double*, int); static void _ode_spec(_NrnThread*, _Memb_list*, int); static void _ode_matsol(_NrnThread*, _Memb_list*, int); #define _cvode_ieq _ppvar[4]._i static void _ode_matsol_instance1(_threadargsproto_); /* connect range variables in _p that hoc is supposed to know about */ static const char *_mechanism[] = { "6.2.0", "kdrcb", "gkdrbar_kdrcb", 0, "ik_kdrcb", "gk_kdrcb", 0, "n_kdrcb", 0, 0}; static Symbol* _k_sym; extern Prop* need_memb(Symbol*); static void nrn_alloc(Prop* _prop) { Prop *prop_ion; double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 12, _prop); /*initialize range parameters*/ gkdrbar = 0.0338; _prop->param = _p; _prop->param_size = 12; _ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ prop_ion = need_memb(_k_sym); nrn_promote(prop_ion, 1, 0); _ppvar[0]._pval = &prop_ion->param[1]; /* ki */ _ppvar[1]._pval = &prop_ion->param[2]; /* ko */ _ppvar[2]._pval = &prop_ion->param[3]; /* ik */ _ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dikdv */ } static void _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; static void _update_ion_pointer(Datum*); extern Symbol* hoc_lookup(const char*); extern void _nrn_thread_reg(int, int, void(*)(Datum*)); extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int)); extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***); extern void _cvode_abstol( Symbol**, double*, int); void _kdrcb_reg() { int _vectorized = 1; _initlists(); ion_reg("k", -10000.); _k_sym = hoc_lookup("k_ion"); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1); _mechtype = nrn_get_mechtype(_mechanism[1]); _nrn_setdata_reg(_mechtype, _setdata); _nrn_thread_reg(_mechtype, 2, _update_ion_pointer); hoc_register_prop_size(_mechtype, 12, 5); hoc_register_dparam_semantics(_mechtype, 0, "k_ion"); hoc_register_dparam_semantics(_mechtype, 1, "k_ion"); hoc_register_dparam_semantics(_mechtype, 2, "k_ion"); hoc_register_dparam_semantics(_mechtype, 3, "k_ion"); hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq"); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 kdrcb /home/cluster/aleka/MainPath/Desktop/FSBC_model/Multicompartmental_Biophysical_models/mechanism/x86_64/kdrcb.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static int _reset; static char *modelname = ""; static int error; static int _ninits = 0; static int _match_recurse=1; static void _modl_cleanup(){ _match_recurse=1;} static int rate(_threadargsprotocomma_ double); static int _ode_spec1(_threadargsproto_); /*static int _ode_matsol1(_threadargsproto_);*/ static int _slist1[1], _dlist1[1]; static int states(_threadargsproto_); /*CVODE*/ static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; { rate ( _threadargscomma_ v ) ; Dn = ( inf - n ) / tau ; } return _reset; } static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { rate ( _threadargscomma_ v ) ; Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau )) ; return 0; } /*END CVODE*/ static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { { rate ( _threadargscomma_ v ) ; n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau)))*(- ( ( ( inf ) ) / tau ) / ( ( ( ( - 1.0 ) ) ) / tau ) - n) ; } return 0; } double alf ( _threadargsprotocomma_ double _lv ) { double _lalf; double _lva ; _lva = _lv - 13.0 ; if ( fabs ( _lva ) < 1e-04 ) { _lva = _lva + 0.0001 ; _lalf = ( - 0.018 * _lva ) / ( - 1.0 + exp ( - ( _lva / 25.0 ) ) ) ; } else { _lalf = ( - 0.018 * ( _lv - 13.0 ) ) / ( - 1.0 + exp ( - ( ( _lv - 13.0 ) / 25.0 ) ) ) ; } return _lalf; } static void _hoc_alf(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = alf ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double bet ( _threadargsprotocomma_ double _lv ) { double _lbet; double _lvb ; _lvb = _lv - 23.0 ; if ( fabs ( _lvb ) < 1e-04 ) { _lvb = _lvb + 0.0001 ; _lbet = ( 0.0054 * _lvb ) / ( - 1.0 + exp ( _lvb / 12.0 ) ) ; } else { _lbet = ( 0.0054 * ( _lv - 23.0 ) ) / ( - 1.0 + exp ( ( _lv - 23.0 ) / 12.0 ) ) ; } return _lbet; } static void _hoc_bet(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = bet ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } static int rate ( _threadargsprotocomma_ double _lv ) { double _lq10 , _lsum , _laa , _lab ; _laa = alf ( _threadargscomma_ _lv ) ; _lab = bet ( _threadargscomma_ _lv ) ; _lsum = _laa + _lab ; inf = _laa / _lsum ; tau = 1.0 / ( _lsum ) ; return 0; } static void _hoc_rate(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = 1.; rate ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } static int _ode_count(int _type){ return 1;} static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); ki = _ion_ki; ko = _ion_ko; _ode_spec1 (_p, _ppvar, _thread, _nt); }} static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { double* _p; Datum* _ppvar; int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 1; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static void _ode_matsol_instance1(_threadargsproto_) { _ode_matsol1 (_p, _ppvar, _thread, _nt); } static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); ki = _ion_ki; ko = _ion_ko; _ode_matsol_instance1(_threadargs_); }} extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int); static void _update_ion_pointer(Datum* _ppvar) { nrn_update_ion_pointer(_k_sym, _ppvar, 0, 1); nrn_update_ion_pointer(_k_sym, _ppvar, 1, 2); nrn_update_ion_pointer(_k_sym, _ppvar, 2, 3); nrn_update_ion_pointer(_k_sym, _ppvar, 3, 4); } static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { int _i; double _save;{ n = n0; { rate ( _threadargscomma_ v ) ; n = inf ; } } } static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){ double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; ki = _ion_ki; ko = _ion_ko; initmodel(_p, _ppvar, _thread, _nt); } } static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ { gk = gkdrbar * n * n * n * n ; ek = 25.0 * log ( ko / ki ) ; ik = gk * ( v - ek ) ; } _current += ik; } return _current; } static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } ki = _ion_ki; ko = _ion_ko; _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001); { double _dik; _dik = ik; _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v); _ion_dikdv += (_dik - ik)/.001 ; } _g = (_g - _rhs)/.001; _ion_ik += ik ; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } } } static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } } } static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v=_v; { ki = _ion_ki; ko = _ion_ko; { states(_p, _ppvar, _thread, _nt); } }} } static void terminal(){} static void _initlists(){ double _x; double* _p = &_x; int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(n) - _p; _dlist1[0] = &(Dn) - _p; _first = 0; } #if defined(__cplusplus) } /* extern "C" */ #endif