/* Created by Language version: 6.2.0 */ /* VECTORIZED */ #define NRN_VECTORIZED 1 #include #include #include #include "scoplib_ansi.h" #undef PI #define nil 0 #include "md1redef.h" #include "section.h" #include "nrniv_mf.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #if !NRNGPU #undef exp #define exp hoc_Exp extern double hoc_Exp(double); #endif #define nrn_init _nrn_init__Nap #define _nrn_initial _nrn_initial__Nap #define nrn_cur _nrn_cur__Nap #define _nrn_current _nrn_current__Nap #define nrn_jacob _nrn_jacob__Nap #define nrn_state _nrn_state__Nap #define _net_receive _net_receive__Nap #define rate rate__Nap #define states states__Nap #define _threadargscomma_ _p, _ppvar, _thread, _nt, #define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, #define _threadargs_ _p, _ppvar, _thread, _nt #define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); /* Thread safe. No static _p or _ppvar. */ #define t _nt->_t #define dt _nt->_dt #define gnapbar _p[0] #define DA_alphamshift _p[1] #define DA_betamshift _p[2] #define DA_alphahfactor _p[3] #define DA_betahfactor _p[4] #define ina _p[5] #define gna _p[6] #define m _p[7] #define h _p[8] #define ena _p[9] #define Dm _p[10] #define Dh _p[11] #define minf _p[12] #define hinf _p[13] #define mtau _p[14] #define htau _p[15] #define v _p[16] #define _g _p[17] #define _ion_ena *_ppvar[0]._pval #define _ion_ina *_ppvar[1]._pval #define _ion_dinadv *_ppvar[2]._pval #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif #if defined(__cplusplus) extern "C" { #endif static int hoc_nrnpointerindex = -1; static Datum* _extcall_thread; static Prop* _extcall_prop; /* external NEURON variables */ /* declaration of user functions */ static void _hoc_hbet(void); static void _hoc_half(void); static void _hoc_mbet(void); static void _hoc_malf(void); static void _hoc_rate(void); static int _mechtype; extern void _nrn_cacheloop_reg(int, int); extern void hoc_register_prop_size(int, int, int); extern void hoc_register_limits(int, HocParmLimits*); extern void hoc_register_units(int, HocParmUnits*); extern void nrn_promote(Prop*, int, int); extern Memb_func* memb_func; extern void _nrn_setdata_reg(int, void(*)(Prop*)); static void _setdata(Prop* _prop) { _extcall_prop = _prop; } static void _hoc_setdata() { Prop *_prop, *hoc_getdata_range(int); _prop = hoc_getdata_range(_mechtype); _setdata(_prop); hoc_retpushx(1.); } /* connect user functions to hoc names */ static VoidFunc hoc_intfunc[] = { "setdata_Nap", _hoc_setdata, "hbet_Nap", _hoc_hbet, "half_Nap", _hoc_half, "mbet_Nap", _hoc_mbet, "malf_Nap", _hoc_malf, "rate_Nap", _hoc_rate, 0, 0 }; #define hbet hbet_Nap #define half half_Nap #define mbet mbet_Nap #define malf malf_Nap extern double hbet( _threadargsprotocomma_ double ); extern double half( _threadargsprotocomma_ double ); extern double mbet( _threadargsprotocomma_ double ); extern double malf( _threadargsprotocomma_ double ); /* declare global and static user variables */ /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { "gnapbar_Nap", 0, 1e+09, 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "gnapbar_Nap", "mho/cm2", "ina_Nap", "mA/cm2", "gna_Nap", "mho/cm2", 0,0 }; static double delta_t = 1; static double h0 = 0; static double m0 = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static void nrn_alloc(Prop*); static void nrn_init(_NrnThread*, _Memb_list*, int); static void nrn_state(_NrnThread*, _Memb_list*, int); static void nrn_cur(_NrnThread*, _Memb_list*, int); static void nrn_jacob(_NrnThread*, _Memb_list*, int); static int _ode_count(int); static void _ode_map(int, double**, double**, double*, Datum*, double*, int); static void _ode_spec(_NrnThread*, _Memb_list*, int); static void _ode_matsol(_NrnThread*, _Memb_list*, int); #define _cvode_ieq _ppvar[3]._i static void _ode_matsol_instance1(_threadargsproto_); /* connect range variables in _p that hoc is supposed to know about */ static const char *_mechanism[] = { "6.2.0", "Nap", "gnapbar_Nap", "DA_alphamshift_Nap", "DA_betamshift_Nap", "DA_alphahfactor_Nap", "DA_betahfactor_Nap", 0, "ina_Nap", "gna_Nap", 0, "m_Nap", "h_Nap", 0, 0}; static Symbol* _na_sym; extern Prop* need_memb(Symbol*); static void nrn_alloc(Prop* _prop) { Prop *prop_ion; double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 18, _prop); /*initialize range parameters*/ gnapbar = 0.0022; DA_alphamshift = 0; DA_betamshift = 0; DA_alphahfactor = 0; DA_betahfactor = 0; _prop->param = _p; _prop->param_size = 18; _ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ prop_ion = need_memb(_na_sym); nrn_promote(prop_ion, 0, 1); _ppvar[0]._pval = &prop_ion->param[0]; /* ena */ _ppvar[1]._pval = &prop_ion->param[3]; /* ina */ _ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */ } static void _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; static void _update_ion_pointer(Datum*); extern Symbol* hoc_lookup(const char*); extern void _nrn_thread_reg(int, int, void(*)(Datum*)); extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int)); extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***); extern void _cvode_abstol( Symbol**, double*, int); void _nap_reg() { int _vectorized = 1; _initlists(); ion_reg("na", -10000.); _na_sym = hoc_lookup("na_ion"); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1); _mechtype = nrn_get_mechtype(_mechanism[1]); _nrn_setdata_reg(_mechtype, _setdata); _nrn_thread_reg(_mechtype, 2, _update_ion_pointer); hoc_register_prop_size(_mechtype, 18, 4); hoc_register_dparam_semantics(_mechtype, 0, "na_ion"); hoc_register_dparam_semantics(_mechtype, 1, "na_ion"); hoc_register_dparam_semantics(_mechtype, 2, "na_ion"); hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq"); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 Nap /home/cluster/aleka/MainPath/Desktop/FSBC_model/Multicompartmental_Biophysical_models/mechanism/x86_64/nap.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static int _reset; static char *modelname = ""; static int error; static int _ninits = 0; static int _match_recurse=1; static void _modl_cleanup(){ _match_recurse=1;} static int rate(_threadargsprotocomma_ double); static int _ode_spec1(_threadargsproto_); /*static int _ode_matsol1(_threadargsproto_);*/ static int _slist1[2], _dlist1[2]; static int states(_threadargsproto_); /*CVODE*/ static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; { rate ( _threadargscomma_ v ) ; Dm = ( minf - m ) / mtau ; Dh = ( hinf - h ) / htau ; } return _reset; } static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { rate ( _threadargscomma_ v ) ; Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ; Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / htau )) ; return 0; } /*END CVODE*/ static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { { rate ( _threadargscomma_ v ) ; m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0 ) ) ) / mtau ) - m) ; h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0 ) ) ) / htau ) - h) ; } return 0; } double malf ( _threadargsprotocomma_ double _lv ) { double _lmalf; double _lva ; _lva = _lv + 12.0 + DA_alphamshift ; if ( fabs ( _lva ) < 1e-04 ) { _lva = _lva + 0.00001 ; } _lmalf = ( - 0.2816 * _lva ) / ( - 1.0 + exp ( - _lva / 9.3 ) ) ; return _lmalf; } static void _hoc_malf(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = malf ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double mbet ( _threadargsprotocomma_ double _lv ) { double _lmbet; double _lvb ; _lvb = _lv - 15.0 + DA_betamshift ; if ( fabs ( _lvb ) < 1e-04 ) { _lvb = _lvb + 0.00001 ; } _lmbet = ( 0.2464 * _lvb ) / ( - 1.0 + exp ( _lvb / 6.0 ) ) ; return _lmbet; } static void _hoc_mbet(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = mbet ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double half ( _threadargsprotocomma_ double _lv ) { double _lhalf; double _lvc ; _lvc = _lv + 42.8477 ; if ( fabs ( _lvc ) < 1e-04 ) { _lvc = _lvc + 0.00001 ; } _lhalf = ( 2.8e-5 + DA_alphahfactor ) * ( exp ( - _lvc / 4.0248 ) ) ; return _lhalf; } static void _hoc_half(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = half ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double hbet ( _threadargsprotocomma_ double _lv ) { double _lhbet; double _lvd ; _lvd = _lv - 413.9284 ; if ( fabs ( _lvd ) < 1e-04 ) { _lvd = _lvd + 0.00001 ; } _lhbet = ( 0.02 + DA_betahfactor ) / ( 1.0 + exp ( - _lvd / 148.2589 ) ) ; return _lhbet; } static void _hoc_hbet(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = hbet ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } static int rate ( _threadargsprotocomma_ double _lv ) { double _lmsum , _lhsum , _lma , _lmb , _lha , _lhb ; _lma = malf ( _threadargscomma_ _lv ) ; _lmb = mbet ( _threadargscomma_ _lv ) ; _lha = half ( _threadargscomma_ _lv ) ; _lhb = hbet ( _threadargscomma_ _lv ) ; _lmsum = _lma + _lmb ; minf = _lma / _lmsum ; mtau = 1.0 / _lmsum ; _lhsum = _lha + _lhb ; hinf = _lha / _lhsum ; htau = 1.0 / _lhsum ; return 0; } static void _hoc_rate(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = 1.; rate ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } static int _ode_count(int _type){ return 2;} static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); ena = _ion_ena; _ode_spec1 (_p, _ppvar, _thread, _nt); }} static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { double* _p; Datum* _ppvar; int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 2; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static void _ode_matsol_instance1(_threadargsproto_) { _ode_matsol1 (_p, _ppvar, _thread, _nt); } static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); ena = _ion_ena; _ode_matsol_instance1(_threadargs_); }} extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int); static void _update_ion_pointer(Datum* _ppvar) { nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0); nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3); nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4); } static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { int _i; double _save;{ h = h0; m = m0; { rate ( _threadargscomma_ v ) ; m = minf ; h = hinf ; } } } static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){ double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; ena = _ion_ena; initmodel(_p, _ppvar, _thread, _nt); } } static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ { gna = gnapbar * m * h ; ina = gna * ( v - 55.0 ) ; } _current += ina; } return _current; } static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } ena = _ion_ena; _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001); { double _dina; _dina = ina; _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v); _ion_dinadv += (_dina - ina)/.001 ; } _g = (_g - _rhs)/.001; _ion_ina += ina ; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } } } static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } } } static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v=_v; { ena = _ion_ena; { states(_p, _ppvar, _thread, _nt); } }} } static void terminal(){} static void _initlists(){ double _x; double* _p = &_x; int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p; _slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p; _first = 0; } #if defined(__cplusplus) } /* extern "C" */ #endif