TITLE Voltage-gated potassium channel from Kv3 subunits COMMENT Voltage-gated potassium channel with high threshold and fast activation/deactivation kinetics KINETIC SCHEME: Hodgkin-Huxley (n^4) n'= alpha * (1-n) - betha * n g(v) = gbar * n^4 * ( v-ek ) The rate constants of activation (alpha) and deactivation (beta) were approximated by: alpha(v) = ca * exp(-(v+cva)/cka) beta(v) = cb * exp(-(v+cvb)/ckb) Parameters can, cvan, ckan, cbn, cvbn, ckbn are given in the CONSTANT block. Values derive from least-square fits to experimental data of G/Gmax(v) and taun(v) in Martina et al. J Neurophys. 97 (563-671, 2007. Model includes a calculation of Kv gating current Reference: Akemann et al., Biophys. J. (2009) 96: 3959-3976 Laboratory for Neuronal Circuit Dynamics RIKEN Brain Science Institute, Wako City, Japan http://www.neurodynamics.brain.riken.jp Date of Implementation: April 2007 Contact: akemann@brain.riken.jp Suffix from Kv3 to Kv3_3 ENDCOMMENT NEURON { THREADSAFE SUFFIX Kv3_3 USEION k READ ek WRITE ik NONSPECIFIC_CURRENT i RANGE gbar, g, ik, i, igate, nc RANGE ninf, taun RANGE gateCurrent, gunit } UNITS { (mV) = (millivolt) (mA) = (milliamp) (nA) = (nanoamp) (pA) = (picoamp) (S) = (siemens) (mS) = (millisiemens) (nS) = (nanosiemens) (pS) = (picosiemens) (um) = (micron) (molar) = (1/liter) (mM) = (millimolar) } CONSTANT { e0 = 1.60217646e-19 (coulombs) q10 = 2.7 ca = 0.22 (1/ms) cva = 16 (mV) cka = -26.5 (mV) cb = 0.22 (1/ms) cvb = 16 (mV) ckb = 26.5 (mV) zn = 1.9196 (1) : valence of n-gate } PARAMETER { gateCurrent = 0 (1) : gating currents ON = 1 OFF = 0 gbar = 0.005 (S/cm2) <0,1e9> gunit = 16 (pS) : unitary conductance } ASSIGNED { celsius (degC) v (mV) ik (mA/cm2) igate (mA/cm2) i (mA/cm2) ek (mV) g (S/cm2) nc (1/cm2) qt (1) ninf (1) taun (ms) alpha (1/ms) beta (1/ms) } STATE { n } INITIAL { nc = (1e12) * gbar / gunit qt = q10^((celsius-22 (degC))/10 (degC)) rateConst(v) n = ninf } BREAKPOINT { SOLVE state METHOD cnexp g = gbar * n^4 ik = g * (v - ek) igate = nc * (1e6) * e0 * 4 * zn * ngateFlip() if (gateCurrent != 0) { i = igate } } DERIVATIVE state { rateConst(v) n' = alpha * (1-n) - beta * n } PROCEDURE rateConst(v (mV)) { alpha = qt * alphaFkt(v) beta = qt * betaFkt(v) ninf = alpha / (alpha + beta) taun = 1 / (alpha + beta) } FUNCTION alphaFkt(v (mV)) (1/ms) { alphaFkt = ca * exp(-(v+cva)/cka) } FUNCTION betaFkt(v (mV)) (1/ms) { betaFkt = cb * exp(-(v+cvb)/ckb) } FUNCTION ngateFlip() (1/ms) { ngateFlip = (ninf-n)/taun }