TITLE K-A : K-A current for Mitral Cells from Wang et al (1996) : M.Migliore Jan. 2002 NEURON { THREADSAFE SUFFIX kamt USEION k READ ek WRITE ik RANGE gbar, q10 GLOBAL minf, mtau, hinf, htau } PARAMETER { gbar = 0.002 (mho/cm2) celsius ek (mV) : must be explicitly def. in hoc v (mV) a0m=0.04 vhalfm=-45 zetam=0.1 gmm=0.75 a0h=0.018 vhalfh=-70 zetah=0.2 gmh=0.99 sha=9.9 shi=5.7 q10=3 } UNITS { (mA) = (milliamp) (mV) = (millivolt) (pS) = (picosiemens) (um) = (micron) } ASSIGNED { ik (mA/cm2) minf mtau (ms) hinf htau (ms) } STATE { m h} BREAKPOINT { SOLVE states METHOD cnexp ik = gbar*m*h*(v - ek) } INITIAL { trates(v) m=minf h=hinf } DERIVATIVE states { trates(v) m' = (minf-m)/mtau h' = (hinf-h)/htau } PROCEDURE trates(v) { LOCAL qt qt=q10^((celsius-24)/10) minf = 1/(1 + exp(-(v-sha-7.6)/14)) mtau = betm(v)/(qt*a0m*(1+alpm(v))) hinf = 1/(1 + exp((v-shi+47.4)/6)) htau = beth(v)/(qt*a0h*(1+alph(v))) } FUNCTION alpm(v(mV)) { alpm = exp(zetam*(v-vhalfm)) } FUNCTION betm(v(mV)) { betm = exp(zetam*gmm*(v-vhalfm)) } FUNCTION alph(v(mV)) { alph = exp(zetah*(v-vhalfh)) } FUNCTION beth(v(mV)) { beth = exp(zetah*gmh*(v-vhalfh)) }