#!/usr/bin/env python """Python script to run cell model""" """ /* Copyright (c) 2015 EPFL-BBP, All rights reserved. THIS SOFTWARE IS PROVIDED BY THE BLUE BRAIN PROJECT ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE BLUE BRAIN PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. """ """ * @file run.py * @brief Run simulation using pyneuron * @author Werner Van Geit @ BBP * @date 2015 """ # pylint: disable=C0325, W0212, F0401, W0612, F0401 import os import neuron import numpy import sys def create_cell(add_synapses=True): """Create the cell model""" # Load morphology neuron.h.load_file("morphology.hoc") # Load biophysics neuron.h.load_file("biophysics.hoc") # Load main cell template neuron.h.load_file("template.hoc") # Instantiate the cell from the template print("Loading cell cADpyr232_L5_TTPC2_a467781f53") cell = neuron.h.cADpyr232_L5_TTPC2_a467781f53(1 if add_synapses else 0) return cell def create_stimuli(cell, step_number): """Create the stimuli""" print('Attaching stimulus electrodes') stimuli = [] step_amp = [0] * 3 with open('current_amps.dat', 'r') as current_amps_file: first_line = current_amps_file.read().split('\n')[0].strip() hyp_amp, step_amp[0], step_amp[1], step_amp[2] = first_line.split(' ') iclamp = neuron.h.IClamp(0.5, sec=cell.soma[0]) iclamp.delay = 700 iclamp.dur = 2000 iclamp.amp = float(step_amp[step_number - 1]) print('Setting up step current clamp: ' 'amp=%f nA, delay=%f ms, duration=%f ms' % (iclamp.amp, iclamp.delay, iclamp.dur)) stimuli.append(iclamp) hyp_iclamp = neuron.h.IClamp(0.5, sec=cell.soma[0]) hyp_iclamp.delay = 0 hyp_iclamp.dur = 3000 hyp_iclamp.amp = float(hyp_amp) print('Setting up hypamp current clamp: ' 'amp=%f nA, delay=%f ms, duration=%f ms' % (hyp_iclamp.amp, hyp_iclamp.delay, hyp_iclamp.dur)) stimuli.append(hyp_iclamp) return stimuli def create_recordings(cell): """Create the recordings""" print('Attaching recording electrodes') recordings = {} recordings['time'] = neuron.h.Vector() recordings['soma(0.5)'] = neuron.h.Vector() recordings['time'].record(neuron.h._ref_t, 0.1) recordings['soma(0.5)'].record(cell.soma[0](0.5)._ref_v, 0.1) return recordings def run_step(step_number, plot_traces=None): """Run step current simulation with index step_number""" cell = create_cell(add_synapses=False) stimuli = create_stimuli(cell, step_number) recordings = create_recordings(cell) # Overriding default 30s simulation, print('Setting simulation time to 3s for the step currents') neuron.h.tstop = 3000 print('Disabling variable timestep integration') neuron.h.cvode_active(0) print('Running for %f ms' % neuron.h.tstop) neuron.h.run() time = numpy.array(recordings['time']) soma_voltage = numpy.array(recordings['soma(0.5)']) recordings_dir = 'python_recordings' soma_voltage_filename = os.path.join( recordings_dir, 'soma_voltage_step%d.dat' % step_number) numpy.savetxt( soma_voltage_filename, numpy.transpose( numpy.vstack(( time, soma_voltage)))) print('Soma voltage for step %d saved to: %s' % (step_number, soma_voltage_filename)) if plot_traces: import pylab pylab.figure() pylab.plot(recordings['time'], recordings['soma(0.5)']) pylab.xlabel('time (ms)') pylab.ylabel('Vm (mV)') pylab.gcf().canvas.set_window_title('Step %d' % step_number) def init_simulation(): """Initialise simulation environment""" neuron.h.load_file("stdrun.hoc") neuron.h.load_file("import3d.hoc") print('Loading constants') neuron.h.load_file('constants.hoc') def main(plot_traces=True): """Main""" # Import matplotlib to plot the traces if plot_traces: import matplotlib matplotlib.rcParams['path.simplify'] = False init_simulation() for step_number in range(1, 4): run_step(step_number, plot_traces=plot_traces) if plot_traces: import pylab pylab.show() if __name__ == '__main__': if len(sys.argv) == 1: main(plot_traces=True) elif len(sys.argv) == 2 and sys.argv[1] == '--no-plots': main(plot_traces=False) else: raise Exception( "Script only accepts one argument: --no-plots, not %s" % str(sys.argv))