COMMENT The kinetics part is obtained from Exp2Syn of NEURON. Two state kinetic scheme synapse described by rise time taur, and decay time constant taud. The normalized peak condunductance is 1. Decay time MUST be greater than rise time. The solution of A->G->bath with rate constants 1/taur and 1/taud is A = a*exp(-t/taur) and G = a*taud/(taud-taur)*(-exp(-t/taur) + exp(-t/taud)) where taur < taud If taud-taur -> 0 then we have a alphasynapse. and if taur -> 0 then we have just single exponential decay. The factor is evaluated in the initial block such that an event of weight 1 generates a peak conductance of 1. Because the solution is a sum of exponentials, the coupled equations can be solved as a pair of independent equations by the more efficient cnexp method. Added by Rishikesh Narayanan: 1. GHK based ionic currents for AMPA current 2. Weights, and their update, according Shouval et al., PNAS, 2002. Details may be found in: Narayanan R, Johnston D. The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule. J Neurophysiol. 2010 Aug;104(2):1020-33. ENDCOMMENT NEURON { POINT_PROCESS Wghkampa_preML USEION na WRITE ina USEION k WRITE ik USEION ca READ cai : Weight update requires cai USEION glut READ gluti WRITE iglut,gluti VALENCE 0 RANGE taur, taud RANGE iampa,winit, iglut RANGE P, Pmax, lr :Presynaptic RANGE g_factor, I, U_SE_factor, glut_factor RANGE U_SE, U_SE_init, tau_takeover, tau_in } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (uS) = (microsiemens) (molar) = (1/liter) (mM) = (millimolar) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } PARAMETER { taur=2 (ms) <1e-9,1e9> taud = 10 (ms) <1e-9,1e9> nai = 18 (mM) : Set for a reversal pot of +55mV nao = 140 (mM) ki = 140 (mM) : Set for a reversal pot of -90mV ko = 5 (mM) cai (mM) celsius (degC) Pmax=1e-6 (cm/s) alpha1=0.35 :Parameters for the Omega function. beta1=80 alpha2=0.55 beta2=80 : winit=1 (1) :Presynaptic tau_rec = 0.8 (ms) tau_in = 3 (ms) U_SE_init = 0.1 (1) U_SE_factor = 0 (1) tau_takeover = 0.1 (ms) : Glutamate glut_factor = 40 (1) : conversion from I to glutamate g_factor = 1 (1) } ASSIGNED { ina (nA) ik (nA) v (mV) P (cm/s) factor iampa (nA) lr Area (cm2) U_SE (1) :Presinaptici I (1) : Glutamate iglut (nA) } STATE { A (cm/s) B (cm/s) : w (1) x (1) y_rel (1) z (1) gluti (mM) } INITIAL { LOCAL tp if (taur/taud > .9999) { taur = .9999*taud } A = 0 B = 0 tp = (taur*taud)/(taud - taur) * log(taud/taur) factor = -exp(-tp/taur) + exp(-tp/taud) factor = 1/factor Area=1 U_SE = U_SE_init : w=winit :Presynaptic x = 1 (1) y_rel = 0 (1) z = 0 (1) I = 0 (1) gluti = 0 (mM) } BREAKPOINT { SOLVE state METHOD cnexp P=B-A : Area is just for unit conversion of ghk output : ina = P*w*ghk(v, nai, nao,1)*Area * g_factor : ik = P*w*ghk(v, ki, ko,1)*Area * g_factor ina = P*ghk(v, nai, nao,1)*Area * g_factor ik = P*ghk(v, ki, ko,1)*Area * g_factor iampa = ik + ina : printf("bp%g\t",gluti) } DERIVATIVE state { lr=eta(cai) : w' = lr*(Omega(cai)-w) A' = -A/taur B' = -B/taud U_SE = U_SE_init * (1 + U_SE_factor) x' = z / tau_rec - U_SE * x * I y_rel' = -y_rel / tau_in + U_SE * x * I z = 1 - x - y_rel gluti' = -gluti / tau_takeover + y_rel * glut_factor :U_SE * x * I :printf("x = %g,\t gluti = %g,\t I = %g\n",x,gluti, I) } FUNCTION ghk(v(mV), ci(mM), co(mM),z) (0.001 coul/cm3) { LOCAL arg, eci, eco arg = (0.001)*z*FARADAY*v/(R*(celsius+273.15)) eco = co*efun(arg) eci = ci*efun(-arg) ghk = (0.001)*z*FARADAY*(eci - eco) } FUNCTION efun(z) { if (fabs(z) < 1e-4) { efun = 1 - z/2 }else{ efun = z/(exp(z) - 1) } } FUNCTION eta(ci (mM)) { : when ci is 0, inv has to be 3 hours. LOCAL inv, P1, P2, P3, P4 P1=100 P2=P1*1e-4 : There was a slip in the paper, which says P2=P1/1e-4 P4=1e3 P3=3 : Cube, directly multiplying, see below. ci=(ci-1e-4)*1e3 : The function takes uM, and we get mM. inv=P4 + P1/(P2+ci*ci*ci) :As P3 is 3, set ci^P3 as ci*ci*ci. eta=1/inv } FUNCTION Omega(ci (mM)) { ci=(ci-1e-4)*1e3 : The function takes uM, and we get mM. Omega=0.25+1/(1+exp(-(ci-alpha2)*beta2))-0.25/(1+exp(-(ci-alpha1)*beta1)) } NET_RECEIVE(weight (uS)) { : Presynaptic terminal STP if( flag==0 ) { I = 10 net_send(0.1,2) } if( flag==2 ) { I = 0 : gluti = 0 } : No use to weight, can be used instead of Pmax, : if you want NetCon access to the synaptic : conductance. : printf("%g\t",y) A = A + Pmax * factor * gluti B = B + Pmax * factor * gluti }