TITLE T-calcium channel UNITS { (mA) = (milliamp) (mV) = (millivolt) (molar) = (1/liter) (mM) = (millimolar) FARADAY = 96520 (coul) R = 8.3134 (joule/degC) KTOMV = .0853 (mV/degC) } NEURON { SUFFIX cat USEION ca READ cai,cao USEION Ca WRITE iCa VALENCE 2 : The T-current does not activate calcium-dependent currents. : The construction with dummy ion Ca prevents the updating of the : internal calcium concentration. RANGE gcat, gcatbar, hinf, minf, taum, tauh, iCa } PARAMETER { v (mV) tBase = 23.5 (degC) celsius = 22 (degC) gcatbar = 0 (mho/cm2) : initialized conductance ki = 0.001 (mM) cai = 5.e-5 (mM) : initial internal Ca++ concentration cao = 2 (mM) : initial external Ca++ concentration tfa = 1 : activation time constant scaling factor : tfi = 0.68 tfi = 0.68 : inactivation time constant scaling factor eca = 140 : Ca++ reversal potential } STATE { m h } ASSIGNED { iCa (mA/cm2) gcat (mho/cm2) hinf tauh minf taum } INITIAL { rates(v) m = minf h = hinf gcat = gcatbar*m*m*h*h2(cai) } BREAKPOINT { SOLVE states METHOD cnexp gcat = gcatbar*m*m*h*h2(cai) iCa = gcat*ghk(v,cai,cao) } DERIVATIVE states { : exact when v held constant rates(v) m' = (minf - m)/taum h' = (hinf - h)/tauh } UNITSOFF FUNCTION h2(cai(mM)) { h2 = ki/(ki+cai) } FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) { LOCAL nu,f f = KTF(celsius)/2 nu = v/f ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu) } FUNCTION KTF(celsius (DegC)) (mV) { KTF = ((25./293.15)*(celsius + 273.15)) } FUNCTION efun(z) { if (fabs(z) < 1e-4) { efun = 1 - z/2 }else{ efun = z/(exp(z) - 1) } } FUNCTION alph(v(mV)) { TABLE FROM -150 TO 150 WITH 200 alph = 1.6e-4*exp(-(v+57)/19) } FUNCTION beth(v(mV)) { TABLE FROM -150 TO 150 WITH 200 :beth = 1/(exp((-v+15)/10)+1.0) beth = 1/(exp((-v+15)/10)+1.0) } FUNCTION alpm(v(mV)) { TABLE FROM -150 TO 150 WITH 200 alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0) } FUNCTION betm(v(mV)) { TABLE FROM -150 TO 150 WITH 200 betm = 0.046*exp(-v/22.73) } PROCEDURE rates(v (mV)) { :callable from hoc LOCAL a a = alpm(v) taum = 1/(tfa*(a + betm(v))) : estimation of activation tau minf = a/(a+betm(v)) : estimation of activation steady state a = alph(v) tauh = 1/(tfi*(a + beth(v))) : estimation of inactivation tau hinf = a/(a+beth(v)) : estimation of inactivation steady state }