TITLE K-DR channel : from Klee Ficker and Heinemann : modified to account for Dax et al. : M.Migliore 1997 UNITS { (mA) = (milliamp) (mV) = (millivolt) } PARAMETER { v (mV) ek (mV) : must be explicitely def. in hoc celsius (degC) gkdrbar=.003 (mho/cm2) vhalfn=13 (mV) a0n=0.02 (/ms) zetan=-3 (1) gmn=0.7 (1) :gmn=1 nmax=0.10 (ms) : was 2 for pureSK tau (ms) q10=1 } NEURON { SUFFIX kdr USEION k READ ek WRITE ik RANGE gkdr,gkdrbar,tau,ik } STATE { n } ASSIGNED { ik (mA/cm2) ninf taun (ms) gkdr (mho/cm2) } BREAKPOINT { SOLVE states METHOD cnexp tau = 0.7*betn(v)/(0.02*(1+ exp(-339.44*(v-13)/(8.315*(273.16+celsius))) )) gkdr = gkdrbar*n ik = gkdr*(v-ek) } INITIAL { rates(v) n=ninf } FUNCTION alpn(v(mV)) { alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) } FUNCTION betn(v(mV)) { betn = exp(1.e-3*zetan*gmn*(v-13)*9.648e4/(8.315*(273.16+celsius))) } DERIVATIVE states { : exact when v held constant; integrates over dt step rates(v) n' = (ninf - n)/taun } PROCEDURE rates(v (mV)) { :callable from hoc LOCAL a,c,qt qt=q10^((celsius-24)/10) a = alpn(v) ninf = 1/(1+a) c = exp(-339.44*(v-13)/(8.315*(273.16+celsius))) taun = 0.7*betn(v)/(qt*a0n*(1+c)) : taun = betn(v)/(qt*a0n*(1+a)) if(taun