%% Script to create and initial 'unstable' weight matrix and a stability-optimised circuit % This code creates an initial 'unstable' weight matrix W according to % (Hennequin et al., Neuron, 2014) and then creates the stability-optimised % variant so that the resulting neuronal dynamics display rich activity transients. % % Written by Jake Stroud % Create intial 'unstable' weight matrix N = 200; %Number of neurons p = 0.1; %Density of connections R = 10; %Initial approximate spectral abscissa prior to stability optimisation gamma = 3; %The inhibition/excitation ratio W = initialnet(N, p, R, gamma); %Create initial 'unstable' weight matrix % Create stabiliy-optimised circuit using the initial weight matrix W rate = 10; %Gradient-descent learning rate desired_SA = 0.15; %Ultimate desired spectral abscissa after stability optimisation % Create stability-optimised circuit Wsoc = soc_function(W, rate, desired_SA, gamma);