: from https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=168148&file=/stadler2014_layerV/kBK.mod TITLE large-conductance calcium-activated potassium channel (BK) :Mechanism according to Gong et al 2001 and Womack&Khodakakhah 2002, :adapted for Layer V cells on the basis of Benhassine&Berger 2005. :NB: concentrations in mM NEURON { SUFFIX kBK USEION k READ ek WRITE ik USEION ca READ cai RANGE gpeak, gkact, caPh, caPk, caPmax, caPmin RANGE caVhh, CaVhk, caVhmax, caVhmin, k, tau GLOBAL pinfmin : cutoff - if pinf < pinfmin, set to 0.; by default cutoff not used (pinfmin==0) } UNITS { (mA) = (milliamp) (mV) = (millivolt) (molar) = (1/liter) (mM) = (millimolar) } PARAMETER { :maximum conductance (Benhassine 05) gpeak = 268e-4 (mho/cm2) <0, 1e9> : Calcium dependence of opening probability (Gong 2001) caPh = 2e-3 (mM) : conc. with half maximum open probaility caPk = 1 : Steepness of calcium dependence curve caPmax = 1 : max and caPmin = 0 : min open probability : Calcium dependence of Vh shift (Womack 2002) caVhh = 2e-3 (mM) : Conc. for half of the Vh shift caVhk = -0.94208 : Steepness of the Vh-calcium dependence curve caVhmax = 155.67 (mV) : max and caVhmin = -46.08 (mV) : min Vh : Voltage dependence of open probability (Gong 2001) : must not be zero k = 17 (mV) : Timeconstant of channel kinetics : no data for a description of a calcium&voltage dependence : some points (room temp) in Behassine 05 & Womack 02 tau = 1 (ms) <1e-12, 1e9> scale = 100 : scaling to incorporate higher ca conc near ca channels pinfmin = 0.0 : cutoff for pinf - less than that set pinf to 0.0 } ASSIGNED { v (mV) ek (mV) ik (mA/cm2) cai (mM) caiScaled (mM) pinf (1) } STATE { p } BREAKPOINT { SOLVE states METHOD cnexp ik = gpeak*p* (v - ek) } DERIVATIVE states { rate(v, cai) p' = (pinf - p)/tau } INITIAL { rate(v, cai) p = pinf } PROCEDURE rate(v(mV), ca(mM)) { caiScaled = ca*scale pinf = P0ca(caiScaled) / ( 1 + exp( (Vhca(caiScaled)-v)/k ) ) if(pinf < pinfmin) { pinf = 0.0 } } FUNCTION P0ca(ca(mM)) (1) { if (ca < 1E-18) { :check for division by zero P0ca = caPmin } else { P0ca = caPmin + ( (caPmax - caPmin) / ( 1 + (caPh/ca)^caPk )) } } FUNCTION Vhca(ca(mM)) (mV) { if (ca < 1E-18) { :check for division by zero Vhca = caVhmax } else { Vhca = caVhmin + ( (caVhmax - caVhmin ) / ( 1 + ((caVhh/ca)^caVhk)) ) } }