/*************************************************************************** * LIFTimeDrivenModel_1_2.cpp * * ------------------- * * copyright : (C) 2013 by Jesus Garrido and Francisco Naveros * * email : jgarrido@atc.ugr.es, fnaveros@atc.ugr.es * ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ #include "../../include/neuron_model/LIFTimeDrivenModel_1_2.h" #include "../../include/neuron_model/VectorNeuronState.h" #include #include #include #include "../../include/openmp/openmp.h" #include "../../include/spike/EDLUTFileException.h" #include "../../include/spike/Neuron.h" #include "../../include/spike/InternalSpike.h" #include "../../include/spike/PropagatedSpike.h" #include "../../include/spike/Interconnection.h" #include "../../include/simulation/Utils.h" #include "../../include/openmp/openmp.h" void LIFTimeDrivenModel_1_2::LoadNeuronModel(string ConfigFile) throw (EDLUTFileException){ FILE *fh; long Currentline = 0L; fh=fopen(ConfigFile.c_str(),"rt"); if(fh){ Currentline=1L; skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->eexc)==1){ skip_comments(fh,Currentline); if (fscanf(fh,"%f",&this->einh)==1){ skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->erest)==1){ skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->vthr)==1){ skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->cm)==1){ inv_cm=1.0f/cm; skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->texc)==1){ inv_texc=1.0f/texc; skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->tinh)==1){ inv_tinh=1.0f/tinh; skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->tref)==1){ skip_comments(fh,Currentline); if(fscanf(fh,"%f",&this->grest)==1){ skip_comments(fh,Currentline); this->InitialState = (VectorNeuronState *) new VectorNeuronState(3, true); } else { throw EDLUTFileException(13,60,3,1,Currentline); } } else { throw EDLUTFileException(13,61,3,1,Currentline); } } else { throw EDLUTFileException(13,62,3,1,Currentline); } } else { throw EDLUTFileException(13,63,3,1,Currentline); } } else { throw EDLUTFileException(13,64,3,1,Currentline); } } else { throw EDLUTFileException(13,65,3,1,Currentline); } } else { throw EDLUTFileException(13,66,3,1,Currentline); } } else { throw EDLUTFileException(13,67,3,1,Currentline); } } else { throw EDLUTFileException(13,68,3,1,Currentline); } //INTEGRATION METHOD this->integrationMethod = LoadIntegrationMethod::loadIntegrationMethod((TimeDrivenNeuronModel *)this, fh, &Currentline, N_NeuronStateVariables, N_DifferentialNeuronState, N_TimeDependentNeuronState); } } void LIFTimeDrivenModel_1_2::SynapsisEffect(int index, Interconnection * InputConnection){ this->GetVectorNeuronState()->IncrementStateVariableAtCPU(index,N_DifferentialNeuronState+InputConnection->GetType(),1e-9f*InputConnection->GetWeight()); } LIFTimeDrivenModel_1_2::LIFTimeDrivenModel_1_2(string NeuronTypeID, string NeuronModelID): TimeDrivenNeuronModel(NeuronTypeID, NeuronModelID), eexc(0), einh(0), erest(0), vthr(0), cm(0), texc(0), tinh(0), tref(0), grest(0){ } LIFTimeDrivenModel_1_2::~LIFTimeDrivenModel_1_2(void) { } void LIFTimeDrivenModel_1_2::LoadNeuronModel() throw (EDLUTFileException){ this->LoadNeuronModel(this->GetModelID()+".cfg"); } VectorNeuronState * LIFTimeDrivenModel_1_2::InitializeState(){ return this->GetVectorNeuronState(); } InternalSpike * LIFTimeDrivenModel_1_2::ProcessInputSpike(Interconnection * inter, Neuron * target, double time){ // Add the effect of the input spike this->SynapsisEffect(target->GetIndex_VectorNeuronState(),inter); return 0; } bool LIFTimeDrivenModel_1_2::UpdateState(int index, VectorNeuronState * State, double CurrentTime){ bool * internalSpike=State->getInternalSpike(); //float * NeuronState; //NeuronState[0] --> vm //NeuronState[1] --> gexc //NeuronState[2] --> ginh double last_update = State->GetLastUpdateTime(0); double elapsed_time = CurrentTime - last_update; float elapsed_time_f=elapsed_time; for(int j=0; j= OPENMPVERSION30 #pragma omp task firstprivate (j) shared(internalSpike, State, CurrentTime) #endif #endif { for (int i=LimitOfOpenMPTasks[j]; i< LimitOfOpenMPTasks[j+1]; i++){ State->AddElapsedTime(i,elapsed_time); double last_spike = State->GetLastSpikeTime(i); float * NeuronState=State->GetStateVariableAt(i); bool spike = false; if (last_spike > this->tref) { this->integrationMethod->NextDifferentialEcuationValue(i, NeuronState, elapsed_time_f); if (NeuronState[0] > this->vthr){ State->NewFiredSpike(i); spike = true; NeuronState[0] = this->erest; this->integrationMethod->resetState(i); } }else{ EvaluateTimeDependentEcuation(NeuronState, elapsed_time_f); } internalSpike[i]=spike; State->SetLastUpdateTime(i,CurrentTime); } } } for (int i=LimitOfOpenMPTasks[NumberOfOpenMPTasks-1]; i< LimitOfOpenMPTasks[NumberOfOpenMPTasks]; i++){ State->AddElapsedTime(i,elapsed_time); double last_spike = State->GetLastSpikeTime(i); float * NeuronState=State->GetStateVariableAt(i); bool spike = false; if (last_spike > this->tref) { this->integrationMethod->NextDifferentialEcuationValue(i, NeuronState, elapsed_time_f); if (NeuronState[0] > this->vthr){ State->NewFiredSpike(i); spike = true; NeuronState[0] = this->erest; this->integrationMethod->resetState(i); } }else{ EvaluateTimeDependentEcuation(NeuronState, elapsed_time_f); } internalSpike[i]=spike; State->SetLastUpdateTime(i,CurrentTime); } #ifdef _OPENMP #if _OPENMP >= OPENMPVERSION30 #pragma omp taskwait #endif #endif return false; } ostream & LIFTimeDrivenModel_1_2::PrintInfo(ostream & out){ out << "- Leaky Time-Driven Model: " << this->GetModelID() << endl; out << "\tExc. Reversal Potential: " << this->eexc << "V\tInh. Reversal Potential: " << this->einh << "V\tResting potential: " << this->erest << "V" << endl; out << "\tFiring threshold: " << this->vthr << "V\tMembrane capacitance: " << this->cm << "nS\tExcitatory Time Constant: " << this->texc << "s" << endl; out << "\tInhibitory time constant: " << this->tinh << "s\tRefractory Period: " << this->tref << "s\tResting Conductance: " << this->grest << "nS" << endl; return out; } void LIFTimeDrivenModel_1_2::InitializeStates(int N_neurons, int OpenMPQueueIndex){ //Initialize neural state variables. float initialization[] = {erest,0.0f,0.0f}; InitialState->InitializeStates(N_neurons, initialization); //Initialize integration method state variables. this->integrationMethod->InitializeStates(N_neurons, initialization); //Calculate number of OpenMP task and size of each one. CalculateTaskSizes(N_neurons, 1000); } void LIFTimeDrivenModel_1_2::EvaluateDifferentialEcuation(float * NeuronState, float * AuxNeuronState){ AuxNeuronState[0]=(NeuronState[1] * (this->eexc - NeuronState[0]) + NeuronState[2] * (this->einh - NeuronState[0]) + grest * (this->erest - NeuronState[0]))*this->inv_cm; } void LIFTimeDrivenModel_1_2::EvaluateTimeDependentEcuation(float * NeuronState, float elapsed_time){ //NeuronState[1]*= ExponentialTable::GetResult(-(elapsed_time*this->inv_texc)); //NeuronState[2]*= ExponentialTable::GetResult(-(elapsed_time*this->inv_tinh)); float limit=1e-20; if(NeuronState[1]inv_texc)); } if(NeuronState[2]inv_tinh)); } } int LIFTimeDrivenModel_1_2::CheckSynapseTypeNumber(int Type){ if(Type=0){ return Type; }else{ cout<<"Neuron model "<GetTypeID()<<", "<GetModelID()<<" does not support input synapses of type "<