COMMENT IA channel Reference: 1. Zhang, L. and McBain, J. Voltage-gated potassium currents in stratum oriens-alveus inhibitory neurons of the rat CA1 hippocampus, J. Physiol. 488.3:647-660, 1995. Activation V1/2 = -14 mV slope = 16.6 activation t = 5 ms Inactivation V1/2 = -71 mV slope = 7.3 inactivation t = 15 ms recovery from inactivation = 142 ms 2. Martina, M. et al. Functional and Molecular Differences between Voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus, J. Neurosci. 18(20):8111-8125, 1998. (only the gkAbar is from this paper) gkabar = 0.0175 mho/cm2 Activation V1/2 = -6.2 +/- 3.3 mV slope = 23.0 +/- 0.7 mV Inactivation V1/2 = -75.5 +/- 2.5 mV slope = 8.5 +/- 0.8 mV recovery from inactivation t = 165 +/- 49 ms 3. Warman, E.N. et al. Reconstruction of Hippocampal CA1 pyramidal cell electrophysiology by computer simulation, J. Neurophysiol. 71(6):2033-2045, 1994. gkabar = 0.01 mho/cm2 (number taken from the work by Numann et al. in guinea pig CA1 neurons) ENDCOMMENT UNITS { (mA) = (milliamp) (mV) = (millivolt) } NEURON { SUFFIX IA USEION k READ ek WRITE ik RANGE gkAbar,ik GLOBAL ainf, binf, aexp, bexp, tau_b } INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} PARAMETER { v (mV) dt (ms) p = 5 (degC) gkAbar = 0.0165 (mho/cm2) :from Martina et al. ek = -90 (mV) tau_a = 5 (ms) } STATE { a b } ASSIGNED { ik (mA/cm2) ainf binf aexp bexp tau_b } BREAKPOINT { SOLVE deriv METHOD derivimplicit ik = gkAbar*a*b*(v - ek) } INITIAL { rates(v) a = ainf b = binf } DERIVATIVE deriv { : Computes state variables m, h, and n rates(v) : at the current v and dt. rates(v) : required to update inf and tau values a' = (ainf - a)/(tau_a) b' = (binf - b)/(tau_b) } PROCEDURE rates(v) { :Computes rate and other constants at current v. :Call once from HOC to initialize inf at resting v. LOCAL alpha_b, beta_b TABLE ainf, aexp, binf, bexp, tau_a, tau_b DEPEND dt, p FROM -200 TO 100 WITH 300 alpha_b = 0.000009/exp((v-26)/18.5) beta_b = 0.014/(exp((v+70)/(-11))+0.2) ainf = 1/(1 + exp(-(v + 14)/16.6)) aexp = 1 - exp(-dt/(tau_a)) tau_b = 1/(alpha_b + beta_b) binf = 1/(1 + exp((v + 71)/7.3)) bexp = 1 - exp(-dt/(tau_b)) } UNITSON