celsius = 35 v_init=-70 global_ra=200.00 // internal resistivity in ohm-cm Cm= 1 // specific membrane capacitance in uF/cm^2 Cmy=0.075 // capacitance in myelin Rm=60000 // specific membrane resistivity in ohm-cm^2 Vleak=-90 Vrest=-70 // spinelimit=100 // distance beyond which to modify for spines spinefactor=2.0 // factor by which to change passive properties setgk = 0.001 // A-type potassium starting density setokslope = 0 // slope of A-type potassium conductance along individual oblique branches. set to 0 in all simulations gkdr=0.040 // (S/cm2 = 10000 pS/um2)delayed rectifier density gkap=setgk // proximal A-type potassium starting density gkad=setgk // distal A-type potassium starting density dlimit=300 // cut-off for increase of A-type density dprox=50 // distance to switch from proximal to distal type dslope=0.01 // slope of A-type density okslope = setokslope // oblique potassium channel gradient okmax = .5 // max potassium channel conductance ghd=2.e-5 // IH dendisity from Migliore et al 2003 // NMDAR and AMPAR parameters nmdaTau1 = 3 //dynamics measured at relevant membrane potential range, Fig.S6 in Schulz et al., 2018 nmdaTau2 = 35 // dynamics measured at relevant membrane potential range, Fig.S6 in Schulz et al., 2018; Kampa at al. J Physiol 2004 ampaWeight = 0.00014 // in uS nmdaWeight = 0.00014 // in uS gnaSoma = 0 // Sodium Action potential are not included gnaSr = 0 // gnaSlm = 0 // // Inhibition parameters. inhRev = -70 gtonic = 0 // standard GABA synapse parameters, these will be reset to values specified in Fig8, FigS8, and FigS9[..].hoc npyTau1 = 2 // npyTau2 = 7 // sstTau1 = npyTau1 // sstTau2 = npyTau2 // npyWeight = 0.0005 // sstWeight = 0.0005 // // GABAB parameters GABAB_tauD=10 GABA_release_weight=1 // release in mM measured at 2 um from release site GIRK_conductance_weight = 0.0004