function params = param_Inputs(prm_ra) main_config(); if contains(rule_id_list{rule_id}, 'threshold=') W_max = 0.02; else W_max = 0.33; end %% Input weight matrix initialization n_wedge_neurons = prm_ra.n_wedge_neurons; switch input_weight_options{input_weight_id} case 'zero weight' W_input = zeros(n_wedge_neurons, n_input_nodes); case 'von Mises weight' d = 2*pi/n_input_nodes; kappa = 3; %p = circularPdfVonMises(0:d:(2*pi-0.001), 0, kappa, 'radian'); W_input = zeros(n_wedge_neurons, n_input_nodes); for i = 1:size(W_input,1) W_input(i,:) = circularPdfVonMises(0:d:(2*pi-0.001), 2*pi/n_wedge_neurons*i, kappa, 'radian'); end W_input = W_input/max(W_input(:))*W_max; case 'random weight' W_input = rand(n_wedge_neurons, n_input_nodes)*W_max; end %% params.initial_weight_description = input_weight_options{input_weight_id}; params.use_2D_input = use_2D_input; params.n_input_azimuth = n_input_azimuth; params.n_input_elevation = n_input_elevation; params.n_input_nodes = n_input_nodes; params.W_input = W_input; params.input_is_excitatory_1_inhibitory_m1 = input_is_excitatory_1_inhibitory_m1;