%% SFO Model % Burst Firing: % For values of gNa=150 & gK=100 (in mS/cm^2) we get burst firing, % gKS ranges from 2-5mS/cm^2 depending on the burst regime (B1 vs B2). % Tonic Firing: % Transition burst firing regime to tonic firing by either: % 1. Increasing gK from 100mS/cm^2 to 280mS/cm^2. % 2. Increasing gNa from from 150mS/cm^2 to 170mS/cm^2. clear %% Time: dt = 0.01; % Step Size for Eulers Method timesec = 30; % End Time (s) tfinal = timesec*1000; % End Time (ms) Tstep =(0:dt:tfinal); % Time Array (ms) %% Initial Values: V=-60; % Membrane Potential (mV) nA=0; % IK Activation mA=0.35; % IKS Activation hA=0; % IKS Inactivation mKA=0; % IA Activation hKA=0; % IA Inactivation sA=0; % INa Activation kA=0; % INa Inactivation mNaP=0; % INaP Activation hNaP=0; % INaP Inactivation mNCa=0; % ICa Activation %% Cell Properties % Cell Morphology: CellSize = 10; % Model Cell Diameter in microns CellArea = 4*pi*((CellSize/2).^2); % Model Cell Area for Spherical Shape % Cell Capacitance: Cr = 5; % Real Cell Capacitance in pF C = (Cr/CellArea)*100; % Model Capacitance in uF/cm^2 % Cell Resistance: Rr = 1; % Real Cell Resistance in gigaohms R = (Rr * CellArea)*10; % Model Cell Resistance in ohms*cm^2 % Reversal Potential (in mV): Er = -65; % Reversal Potential for leak ENa = 107; % Reversal Potential for Na+ EK = -88; % Reversal Potential for K+ ENSCC = -35; % Reversal Potential for NSCC ECa = 120; % Reversal Potential for Ca2+ % Conductance (in mS/cm^2): gLeak = (1/R)*1000; % Conductance of IL gK = 100; % Conductance of IK gKS = 3; % Conductance of IKS gA = 3; % Conductance of IA gNa = 150; % Conductance of INa gNaP = 0.13; % Conductance of INaP gNSCC = 0.2; % Conductance of INSCC gCa = 0.3; % Conductance of ICa %% Zeros Vectors Vm=zeros(1,length(Tstep)); Iz=zeros(1,length(Tstep)); IN=zeros(1,length(Tstep)); %% Looping Code % Solving differential equations with Eulers method: tidx=0; for z=Tstep tidx=tidx+1; %% Injected Current % Where 1 pA = 0.3183 uA/cm^2 & 10 pA = 3.18 uA/cm^2 I=0; %% Time Constants (in ms): tau_nA = 7.2-(6.4/(1+exp((V+28.3)/-19.2))); % Time Constant for IK activation tau_mA = 3000; % Time Constant for IKS activation tau_hA = 10; % Time Constant for IKS inactivation tau_sA = 0.1; % Time Constant for INa activation tau_kA = 1; % Time Constant for INa inactivation tau_mNaP = 5; % Time Constant for INaP activation tau_hNaP = 50; % Time Constant for INaP inactivation tau_mNCa = 5; % Time Constant for ICa activation tau_mKA = 5; % Time Constant for IA activation tau_hKA = 30; % Time Constant for IA inactivation %% Current Equations: % Potassium Currents: % Delayed-rectifier K+ Current (IK): nA0=1/(1+exp((V-2)/-8)); nA = nA + dt*((nA0-nA)/tau_nA); IK = gK*nA^4*(V-EK); % Slow-activating K+ Current (IKS): mA0 = 1/(1+exp((V+44)/-18)); mA = mA + dt*((mA0-mA)/tau_mA); hA0 = 1/(1+exp((V+61)/8)); hA = hA + dt*((hA0-hA)/tau_hA); IKS = gKS*mA^3*hA*(V-EK); % Transient K+ Current (IA): mKA0 = 1/(1+exp((V+44)/-18)); mKA = mKA + dt*((mKA0-mKA)/tau_mKA); hKA0 = 1/(1+exp((V+61)/8)); hKA = hKA + dt*((hKA0-hKA)/tau_hKA); IA = gA*mKA^3*hKA*(V-EK); % Sodium Currents: % Transient Na+ Current (INa): sA0 = 1/(1+exp((V+31)/-6.11)); sA = sA + dt*((sA0-sA)/tau_sA); kA0 = 1/(1+exp((V+62)/6.15)); kA = kA + dt*((kA0-kA)/tau_kA); INa = gNa*sA^3*kA*(V-ENa); % Persisent Na+ Current (INaP): mNaP0 = 1/(1+exp((V+55)/-4)); mNaP = mNaP + dt*((mNaP0-mNaP)/tau_mNaP); hNaP0 =1/(1+exp((V+45)/6.1)); hNaP = hNaP + dt*((hNaP0-hNaP)/tau_hNaP); INaP = gNaP*mNaP^3*hNaP*(V-ENa); % Calcium Currents: % N-Type Ca2+ Current (ICa): mNCa0 = 1/(1+exp((V+14)/-5.8)); mNCa = mNCa + dt*((mNCa0-mNCa)/tau_mNCa); ICa = gCa*mNCa^2*(V-ECa); % Leak Current (IL): IL = gLeak*(V-Er); % Non-selective Cation Current (INSCC): INSCC = gNSCC*(V-ENSCC); % Noise (IN): stdnoise = 9; % Standard Deviation for Noise IN=stdnoise*randn; % Noise Current (Gaussian Distribution) %% Voltage Calculation: V = V + ((dt/C)*(I + IN - IL - INa - IK - INSCC - INaP - IA - ICa - IKS)); %% Voltage Array: Vm(tidx)= V; end %% Membrane Potential vs Time Plot: figure('Renderer', 'painters', 'Position', [100 100 1200 500]) sh(1)=subplot(1,1,1); plot(Tstep,Vm,'k-') % Figure Settings: box off ax = gca; ax.FontSize = 14; xlabel('Time (s)','FontSize',14) ylabel('Membrane Potential (mV)','FontSize',14) xt=arrayfun(@num2str,get(gca,'xtick')/1000,'un',0); set(gca,'xticklabel',xt)