/* Created by Language version: 7.5.0 */ /* VECTORIZED */ #define NRN_VECTORIZED 1 #include #include #include #include "scoplib_ansi.h" #undef PI #define nil 0 #include "md1redef.h" #include "section.h" #include "nrniv_mf.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #if !NRNGPU #undef exp #define exp hoc_Exp extern double hoc_Exp(double); #endif #define nrn_init _nrn_init__gaines_sensory_node #define _nrn_initial _nrn_initial__gaines_sensory_node #define nrn_cur _nrn_cur__gaines_sensory_node #define _nrn_current _nrn_current__gaines_sensory_node #define nrn_jacob _nrn_jacob__gaines_sensory_node #define nrn_state _nrn_state__gaines_sensory_node #define _net_receive _net_receive__gaines_sensory_node #define evaluate_fct evaluate_fct__gaines_sensory_node #define states states__gaines_sensory_node #define _threadargscomma_ _p, _ppvar, _thread, _nt, #define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, #define _threadargs_ _p, _ppvar, _thread, _nt #define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); /* Thread safe. No static _p or _ppvar. */ #define t _nt->_t #define dt _nt->_dt #define gnapbar _p[0] #define gnabar _p[1] #define gkbar _p[2] #define gl _p[3] #define gkf _p[4] #define ena _p[5] #define ek _p[6] #define el _p[7] #define ekf _p[8] #define inap _p[9] #define ina _p[10] #define ik _p[11] #define il _p[12] #define ikf _p[13] #define mp_inf _p[14] #define m_inf _p[15] #define h_inf _p[16] #define s_inf _p[17] #define n_inf _p[18] #define tau_mp _p[19] #define tau_m _p[20] #define tau_h _p[21] #define tau_s _p[22] #define tau_n _p[23] #define mp _p[24] #define m _p[25] #define h _p[26] #define s _p[27] #define n _p[28] #define Dmp _p[29] #define Dm _p[30] #define Dh _p[31] #define Ds _p[32] #define Dn _p[33] #define q10_1 _p[34] #define q10_2 _p[35] #define q10_3 _p[36] #define v _p[37] #define _g _p[38] #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif #if defined(__cplusplus) extern "C" { #endif static int hoc_nrnpointerindex = -1; static Datum* _extcall_thread; static Prop* _extcall_prop; /* external NEURON variables */ extern double celsius; /* declaration of user functions */ static void _hoc_Exp(void); static void _hoc_evaluate_fct(void); static void _hoc_vtrap(void); static void _hoc_vtrapNB(void); static void _hoc_vtrapNA(void); static void _hoc_vtrap8(void); static void _hoc_vtrap7(void); static void _hoc_vtrap6(void); static void _hoc_vtrap2(void); static void _hoc_vtrap1(void); static int _mechtype; extern void _nrn_cacheloop_reg(int, int); extern void hoc_register_prop_size(int, int, int); extern void hoc_register_limits(int, HocParmLimits*); extern void hoc_register_units(int, HocParmUnits*); extern void nrn_promote(Prop*, int, int); extern Memb_func* memb_func; extern void _nrn_setdata_reg(int, void(*)(Prop*)); static void _setdata(Prop* _prop) { _extcall_prop = _prop; } static void _hoc_setdata() { Prop *_prop, *hoc_getdata_range(int); _prop = hoc_getdata_range(_mechtype); _setdata(_prop); hoc_retpushx(1.); } /* connect user functions to hoc names */ static VoidFunc hoc_intfunc[] = { "setdata_gaines_sensory_node", _hoc_setdata, "Exp_gaines_sensory_node", _hoc_Exp, "evaluate_fct_gaines_sensory_node", _hoc_evaluate_fct, "vtrap_gaines_sensory_node", _hoc_vtrap, "vtrapNB_gaines_sensory_node", _hoc_vtrapNB, "vtrapNA_gaines_sensory_node", _hoc_vtrapNA, "vtrap8_gaines_sensory_node", _hoc_vtrap8, "vtrap7_gaines_sensory_node", _hoc_vtrap7, "vtrap6_gaines_sensory_node", _hoc_vtrap6, "vtrap2_gaines_sensory_node", _hoc_vtrap2, "vtrap1_gaines_sensory_node", _hoc_vtrap1, 0, 0 }; #define Exp Exp_gaines_sensory_node #define vtrap vtrap_gaines_sensory_node #define vtrapNB vtrapNB_gaines_sensory_node #define vtrapNA vtrapNA_gaines_sensory_node #define vtrap8 vtrap8_gaines_sensory_node #define vtrap7 vtrap7_gaines_sensory_node #define vtrap6 vtrap6_gaines_sensory_node #define vtrap2 vtrap2_gaines_sensory_node #define vtrap1 vtrap1_gaines_sensory_node extern double Exp( _threadargsprotocomma_ double ); extern double vtrap( _threadargsprotocomma_ double ); extern double vtrapNB( _threadargsprotocomma_ double ); extern double vtrapNA( _threadargsprotocomma_ double ); extern double vtrap8( _threadargsprotocomma_ double ); extern double vtrap7( _threadargsprotocomma_ double ); extern double vtrap6( _threadargsprotocomma_ double ); extern double vtrap2( _threadargsprotocomma_ double ); extern double vtrap1( _threadargsprotocomma_ double ); /* declare global and static user variables */ #define anC anC_gaines_sensory_node double anC = 1.1; #define anB anB_gaines_sensory_node double anB = -83.2; #define anA anA_gaines_sensory_node double anA = 0.0462; #define asC asC_gaines_sensory_node double asC = -5; #define asB asB_gaines_sensory_node double asB = -27; #define asA asA_gaines_sensory_node double asA = 0.3; #define ahC ahC_gaines_sensory_node double ahC = 8.391; #define ahB ahB_gaines_sensory_node double ahB = 112.712; #define ahA ahA_gaines_sensory_node double ahA = 0.075286; #define amC amC_gaines_sensory_node double amC = 10.3; #define amB amB_gaines_sensory_node double amB = 20.1795; #define amA amA_gaines_sensory_node double amA = 1.77753; #define ampC ampC_gaines_sensory_node double ampC = 10.2; #define ampB ampB_gaines_sensory_node double ampB = 26.852; #define ampA ampA_gaines_sensory_node double ampA = 0.00957; #define bnC bnC_gaines_sensory_node double bnC = 10.5; #define bnB bnB_gaines_sensory_node double bnB = -66; #define bnA bnA_gaines_sensory_node double bnA = 0.0824; #define bsC bsC_gaines_sensory_node double bsC = -1; #define bsB bsB_gaines_sensory_node double bsB = 10; #define bsA bsA_gaines_sensory_node double bsA = 0.03; #define bhC bhC_gaines_sensory_node double bhC = 10.2263; #define bhB bhB_gaines_sensory_node double bhB = 30.5435; #define bhA bhA_gaines_sensory_node double bhA = 2.8083; #define bmC bmC_gaines_sensory_node double bmC = 9.16; #define bmB bmB_gaines_sensory_node double bmB = 25.4746; #define bmA bmA_gaines_sensory_node double bmA = 0.0823; #define bmpC bmpC_gaines_sensory_node double bmpC = 10; #define bmpB bmpB_gaines_sensory_node double bmpB = 33.8333; #define bmpA bmpA_gaines_sensory_node double bmpA = 0.0002401; #define vtraub vtraub_gaines_sensory_node double vtraub = -80; /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "gnapbar_gaines_sensory_node", "mho/cm2", "gnabar_gaines_sensory_node", "mho/cm2", "gkbar_gaines_sensory_node", "mho/cm2", "gl_gaines_sensory_node", "mho/cm2", "gkf_gaines_sensory_node", "mho/cm2", "ena_gaines_sensory_node", "mV", "ek_gaines_sensory_node", "mV", "el_gaines_sensory_node", "mV", "ekf_gaines_sensory_node", "mV", "inap_gaines_sensory_node", "mA/cm2", "ina_gaines_sensory_node", "mA/cm2", "ik_gaines_sensory_node", "mA/cm2", "il_gaines_sensory_node", "mA/cm2", "ikf_gaines_sensory_node", "mA/cm2", 0,0 }; static double delta_t = 1; static double h0 = 0; static double m0 = 0; static double mp0 = 0; static double n0 = 0; static double s0 = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { "vtraub_gaines_sensory_node", &vtraub_gaines_sensory_node, "ampA_gaines_sensory_node", &A_gaines_sensory_node, "ampB_gaines_sensory_node", &B_gaines_sensory_node, "ampC_gaines_sensory_node", &C_gaines_sensory_node, "bmpA_gaines_sensory_node", &bmpA_gaines_sensory_node, "bmpB_gaines_sensory_node", &bmpB_gaines_sensory_node, "bmpC_gaines_sensory_node", &bmpC_gaines_sensory_node, "amA_gaines_sensory_node", &amA_gaines_sensory_node, "amB_gaines_sensory_node", &amB_gaines_sensory_node, "amC_gaines_sensory_node", &amC_gaines_sensory_node, "bmA_gaines_sensory_node", &bmA_gaines_sensory_node, "bmB_gaines_sensory_node", &bmB_gaines_sensory_node, "bmC_gaines_sensory_node", &bmC_gaines_sensory_node, "ahA_gaines_sensory_node", &ahA_gaines_sensory_node, "ahB_gaines_sensory_node", &ahB_gaines_sensory_node, "ahC_gaines_sensory_node", &ahC_gaines_sensory_node, "bhA_gaines_sensory_node", &bhA_gaines_sensory_node, "bhB_gaines_sensory_node", &bhB_gaines_sensory_node, "bhC_gaines_sensory_node", &bhC_gaines_sensory_node, "asA_gaines_sensory_node", &asA_gaines_sensory_node, "asB_gaines_sensory_node", &asB_gaines_sensory_node, "asC_gaines_sensory_node", &asC_gaines_sensory_node, "bsA_gaines_sensory_node", &bsA_gaines_sensory_node, "bsB_gaines_sensory_node", &bsB_gaines_sensory_node, "bsC_gaines_sensory_node", &bsC_gaines_sensory_node, "anA_gaines_sensory_node", &anA_gaines_sensory_node, "anB_gaines_sensory_node", &anB_gaines_sensory_node, "anC_gaines_sensory_node", &anC_gaines_sensory_node, "bnA_gaines_sensory_node", &bnA_gaines_sensory_node, "bnB_gaines_sensory_node", &bnB_gaines_sensory_node, "bnC_gaines_sensory_node", &bnC_gaines_sensory_node, 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static void nrn_alloc(Prop*); static void nrn_init(_NrnThread*, _Memb_list*, int); static void nrn_state(_NrnThread*, _Memb_list*, int); static void nrn_cur(_NrnThread*, _Memb_list*, int); static void nrn_jacob(_NrnThread*, _Memb_list*, int); static int _ode_count(int); static void _ode_map(int, double**, double**, double*, Datum*, double*, int); static void _ode_spec(_NrnThread*, _Memb_list*, int); static void _ode_matsol(_NrnThread*, _Memb_list*, int); #define _cvode_ieq _ppvar[0]._i static void _ode_matsol_instance1(_threadargsproto_); /* connect range variables in _p that hoc is supposed to know about */ static const char *_mechanism[] = { "7.5.0", "gaines_sensory_node", "gnapbar_gaines_sensory_node", "gnabar_gaines_sensory_node", "gkbar_gaines_sensory_node", "gl_gaines_sensory_node", "gkf_gaines_sensory_node", "ena_gaines_sensory_node", "ek_gaines_sensory_node", "el_gaines_sensory_node", "ekf_gaines_sensory_node", 0, "inap_gaines_sensory_node", "ina_gaines_sensory_node", "ik_gaines_sensory_node", "il_gaines_sensory_node", "ikf_gaines_sensory_node", "mp_inf_gaines_sensory_node", "m_inf_gaines_sensory_node", "h_inf_gaines_sensory_node", "s_inf_gaines_sensory_node", "n_inf_gaines_sensory_node", "tau_mp_gaines_sensory_node", "tau_m_gaines_sensory_node", "tau_h_gaines_sensory_node", "tau_s_gaines_sensory_node", "tau_n_gaines_sensory_node", 0, "mp_gaines_sensory_node", "m_gaines_sensory_node", "h_gaines_sensory_node", "s_gaines_sensory_node", "n_gaines_sensory_node", 0, 0}; extern Prop* need_memb(Symbol*); static void nrn_alloc(Prop* _prop) { Prop *prop_ion; double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 39, _prop); /*initialize range parameters*/ gnapbar = 0.01; gnabar = 3; gkbar = 0.04106; gl = 0.006005; gkf = 0.02737; ena = 50; ek = -90; el = -90; ekf = -90; _prop->param = _p; _prop->param_size = 39; _ppvar = nrn_prop_datum_alloc(_mechtype, 1, _prop); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ } static void _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; extern Symbol* hoc_lookup(const char*); extern void _nrn_thread_reg(int, int, void(*)(Datum*)); extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int)); extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***); extern void _cvode_abstol( Symbol**, double*, int); void _gaines_sensory_node_reg() { int _vectorized = 1; _initlists(); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1); _mechtype = nrn_get_mechtype(_mechanism[1]); _nrn_setdata_reg(_mechtype, _setdata); hoc_register_prop_size(_mechtype, 39, 1); hoc_register_dparam_semantics(_mechtype, 0, "cvodeieq"); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 gaines_sensory_node /home/mcapll/JA1/simulations/stimulation_ja1_revisions/monophasic/current_00500nA/EC/x86_64/gaines_sensory_node.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static int _reset; static char *modelname = "Sensory Axon Node channels"; static int error; static int _ninits = 0; static int _match_recurse=1; static void _modl_cleanup(){ _match_recurse=1;} static int evaluate_fct(_threadargsprotocomma_ double); static int _ode_spec1(_threadargsproto_); /*static int _ode_matsol1(_threadargsproto_);*/ static int _slist1[5], _dlist1[5]; static int states(_threadargsproto_); /*CVODE*/ static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; { evaluate_fct ( _threadargscomma_ v ) ; Dmp = ( mp_inf - mp ) / tau_mp ; Dm = ( m_inf - m ) / tau_m ; Dh = ( h_inf - h ) / tau_h ; Ds = ( s_inf - s ) / tau_s ; Dn = ( n_inf - n ) / tau_n ; } return _reset; } static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { evaluate_fct ( _threadargscomma_ v ) ; Dmp = Dmp / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_mp )) ; Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ; Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_h )) ; Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_s )) ; Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_n )) ; return 0; } /*END CVODE*/ static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { { evaluate_fct ( _threadargscomma_ v ) ; mp = mp + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_mp)))*(- ( ( ( mp_inf ) ) / tau_mp ) / ( ( ( ( - 1.0 ) ) ) / tau_mp ) - mp) ; m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ; h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ; s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_s)))*(- ( ( ( s_inf ) ) / tau_s ) / ( ( ( ( - 1.0 ) ) ) / tau_s ) - s) ; n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_n)))*(- ( ( ( n_inf ) ) / tau_n ) / ( ( ( ( - 1.0 ) ) ) / tau_n ) - n) ; } return 0; } static int evaluate_fct ( _threadargsprotocomma_ double _lv ) { double _la , _lb , _lv2 ; _la = q10_1 * vtrap1 ( _threadargscomma_ _lv ) ; _lb = q10_1 * vtrap2 ( _threadargscomma_ _lv ) ; tau_mp = 1.0 / ( _la + _lb ) ; mp_inf = _la / ( _la + _lb ) ; _la = q10_1 * vtrap6 ( _threadargscomma_ _lv ) ; _lb = q10_1 * vtrap7 ( _threadargscomma_ _lv ) ; tau_m = 1.0 / ( _la + _lb ) ; m_inf = _la / ( _la + _lb ) ; _la = q10_2 * vtrap8 ( _threadargscomma_ _lv ) ; _lb = q10_2 * bhA / ( 1.0 + Exp ( _threadargscomma_ - ( _lv + bhB ) / bhC ) ) ; tau_h = 1.0 / ( _la + _lb ) ; h_inf = _la / ( _la + _lb ) ; _lv2 = _lv - vtraub ; _la = q10_3 * asA / ( Exp ( _threadargscomma_ ( _lv2 + asB ) / asC ) + 1.0 ) ; _lb = q10_3 * bsA / ( Exp ( _threadargscomma_ ( _lv2 + bsB ) / bsC ) + 1.0 ) ; tau_s = 1.0 / ( _la + _lb ) ; s_inf = _la / ( _la + _lb ) ; _la = q10_3 * vtrapNA ( _threadargscomma_ _lv ) ; _lb = q10_3 * vtrapNB ( _threadargscomma_ _lv ) ; tau_n = 1.0 / ( _la + _lb ) ; n_inf = _la / ( _la + _lb ) ; return 0; } static void _hoc_evaluate_fct(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = 1.; evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap ( _threadargsprotocomma_ double _lx ) { double _lvtrap; if ( _lx < - 50.0 ) { _lvtrap = 0.0 ; } else { _lvtrap = bsA / ( Exp ( _threadargscomma_ ( _lx + bsB ) / bsC ) + 1.0 ) ; } return _lvtrap; } static void _hoc_vtrap(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap1 ( _threadargsprotocomma_ double _lx ) { double _lvtrap1; if ( fabs ( ( _lx + ampB ) / ampC ) < 1e-6 ) { _lvtrap1 = ampA * ampC ; } else { _lvtrap1 = ( ampA * ( _lx + ampB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + ampB ) / ampC ) ) ; } return _lvtrap1; } static void _hoc_vtrap1(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap1 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap2 ( _threadargsprotocomma_ double _lx ) { double _lvtrap2; if ( fabs ( ( _lx + bmpB ) / bmpC ) < 1e-6 ) { _lvtrap2 = bmpA * bmpC ; } else { _lvtrap2 = ( bmpA * ( - ( _lx + bmpB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmpB ) / bmpC ) ) ; } return _lvtrap2; } static void _hoc_vtrap2(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap2 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap6 ( _threadargsprotocomma_ double _lx ) { double _lvtrap6; if ( fabs ( ( _lx + amB ) / amC ) < 1e-6 ) { _lvtrap6 = amA * amC ; } else { _lvtrap6 = ( amA * ( _lx + amB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + amB ) / amC ) ) ; } return _lvtrap6; } static void _hoc_vtrap6(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap6 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap7 ( _threadargsprotocomma_ double _lx ) { double _lvtrap7; if ( fabs ( ( _lx + bmB ) / bmC ) < 1e-6 ) { _lvtrap7 = bmA * bmC ; } else { _lvtrap7 = ( bmA * ( - ( _lx + bmB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmB ) / bmC ) ) ; } return _lvtrap7; } static void _hoc_vtrap7(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap7 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap8 ( _threadargsprotocomma_ double _lx ) { double _lvtrap8; if ( fabs ( ( _lx + ahB ) / ahC ) < 1e-6 ) { _lvtrap8 = ahA * ahC ; } else { _lvtrap8 = ( ahA * ( - ( _lx + ahB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + ahB ) / ahC ) ) ; } return _lvtrap8; } static void _hoc_vtrap8(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap8 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrapNA ( _threadargsprotocomma_ double _lx ) { double _lvtrapNA; if ( fabs ( ( anB - _lx ) / anC ) < 1e-6 ) { _lvtrapNA = anA * anC ; } else { _lvtrapNA = anA * ( v - anB ) / ( 1.0 - Exp ( _threadargscomma_ ( anB - v ) / anC ) ) ; } return _lvtrapNA; } static void _hoc_vtrapNA(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrapNA ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrapNB ( _threadargsprotocomma_ double _lx ) { double _lvtrapNB; if ( fabs ( ( _lx - bnB ) / bnC ) < 1e-6 ) { _lvtrapNB = bnA * bnC ; } else { _lvtrapNB = bnA * ( bnB - v ) / ( 1.0 - Exp ( _threadargscomma_ ( v - bnB ) / bnC ) ) ; } return _lvtrapNB; } static void _hoc_vtrapNB(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrapNB ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double Exp ( _threadargsprotocomma_ double _lx ) { double _lExp; if ( _lx < - 100.0 ) { _lExp = 0.0 ; } else { _lExp = exp ( _lx ) ; } return _lExp; } static void _hoc_Exp(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = Exp ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } static int _ode_count(int _type){ return 5;} static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_spec1 (_p, _ppvar, _thread, _nt); }} static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { double* _p; Datum* _ppvar; int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 5; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static void _ode_matsol_instance1(_threadargsproto_) { _ode_matsol1 (_p, _ppvar, _thread, _nt); } static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_matsol_instance1(_threadargs_); }} static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { int _i; double _save;{ h = h0; m = m0; mp = mp0; n = n0; s = s0; { q10_1 = pow( 2.2 , ( ( celsius - 20.0 ) / 10.0 ) ) ; q10_2 = pow( 2.9 , ( ( celsius - 20.0 ) / 10.0 ) ) ; q10_3 = pow( 3.0 , ( ( celsius - 36.0 ) / 10.0 ) ) ; evaluate_fct ( _threadargscomma_ v ) ; mp = mp_inf ; m = m_inf ; h = h_inf ; s = s_inf ; n = n_inf ; } } } static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){ double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; initmodel(_p, _ppvar, _thread, _nt); } } static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ { inap = gnapbar * mp * mp * mp * ( v - ena ) ; ina = gnabar * m * m * m * h * ( v - ena ) ; ik = gkbar * s * ( v - ek ) ; il = gl * ( v - el ) ; ikf = gkf * n * n * n * n * ( v - ekf ) ; } _current += ina; _current += inap; _current += ik; _current += il; _current += ikf; } return _current; } static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001); { _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v); } _g = (_g - _rhs)/.001; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } } } static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } } } static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v=_v; { { states(_p, _ppvar, _thread, _nt); }}} } static void terminal(){} static void _initlists(){ double _x; double* _p = &_x; int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(mp) - _p; _dlist1[0] = &(Dmp) - _p; _slist1[1] = &(m) - _p; _dlist1[1] = &(Dm) - _p; _slist1[2] = &(h) - _p; _dlist1[2] = &(Dh) - _p; _slist1[3] = &(s) - _p; _dlist1[3] = &(Ds) - _p; _slist1[4] = &(n) - _p; _dlist1[4] = &(Dn) - _p; _first = 0; } #if defined(__cplusplus) } /* extern "C" */ #endif