/* Created by Language version: 7.5.0 */ /* VECTORIZED */ #define NRN_VECTORIZED 1 #include #include #include #include "scoplib_ansi.h" #undef PI #define nil 0 #include "md1redef.h" #include "section.h" #include "nrniv_mf.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #if !NRNGPU #undef exp #define exp hoc_Exp extern double hoc_Exp(double); #endif #define nrn_init _nrn_init__gaines_sensory_stin #define _nrn_initial _nrn_initial__gaines_sensory_stin #define nrn_cur _nrn_cur__gaines_sensory_stin #define _nrn_current _nrn_current__gaines_sensory_stin #define nrn_jacob _nrn_jacob__gaines_sensory_stin #define nrn_state _nrn_state__gaines_sensory_stin #define _net_receive _net_receive__gaines_sensory_stin #define evaluate_fct evaluate_fct__gaines_sensory_stin #define states states__gaines_sensory_stin #define _threadargscomma_ _p, _ppvar, _thread, _nt, #define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, #define _threadargs_ _p, _ppvar, _thread, _nt #define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); /* Thread safe. No static _p or _ppvar. */ #define t _nt->_t #define dt _nt->_dt #define gkbar _p[0] #define gl _p[1] #define gq _p[2] #define gkf _p[3] #define ek _p[4] #define el _p[5] #define eq _p[6] #define ekf _p[7] #define ik _p[8] #define il _p[9] #define iq _p[10] #define ikf _p[11] #define s_inf _p[12] #define q_inf _p[13] #define n_inf _p[14] #define tau_s _p[15] #define tau_q _p[16] #define tau_n _p[17] #define s _p[18] #define q _p[19] #define n _p[20] #define Ds _p[21] #define Dq _p[22] #define Dn _p[23] #define q10_1 _p[24] #define q10_2 _p[25] #define q10_3 _p[26] #define v _p[27] #define _g _p[28] #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif #if defined(__cplusplus) extern "C" { #endif static int hoc_nrnpointerindex = -1; static Datum* _extcall_thread; static Prop* _extcall_prop; /* external NEURON variables */ extern double celsius; /* declaration of user functions */ static void _hoc_Exp(void); static void _hoc_evaluate_fct(void); static void _hoc_vtrapNB(void); static void _hoc_vtrapNA(void); static int _mechtype; extern void _nrn_cacheloop_reg(int, int); extern void hoc_register_prop_size(int, int, int); extern void hoc_register_limits(int, HocParmLimits*); extern void hoc_register_units(int, HocParmUnits*); extern void nrn_promote(Prop*, int, int); extern Memb_func* memb_func; extern void _nrn_setdata_reg(int, void(*)(Prop*)); static void _setdata(Prop* _prop) { _extcall_prop = _prop; } static void _hoc_setdata() { Prop *_prop, *hoc_getdata_range(int); _prop = hoc_getdata_range(_mechtype); _setdata(_prop); hoc_retpushx(1.); } /* connect user functions to hoc names */ static VoidFunc hoc_intfunc[] = { "setdata_gaines_sensory_stin", _hoc_setdata, "Exp_gaines_sensory_stin", _hoc_Exp, "evaluate_fct_gaines_sensory_stin", _hoc_evaluate_fct, "vtrapNB_gaines_sensory_stin", _hoc_vtrapNB, "vtrapNA_gaines_sensory_stin", _hoc_vtrapNA, 0, 0 }; #define Exp Exp_gaines_sensory_stin #define vtrapNB vtrapNB_gaines_sensory_stin #define vtrapNA vtrapNA_gaines_sensory_stin extern double Exp( _threadargsprotocomma_ double ); extern double vtrapNB( _threadargsprotocomma_ double ); extern double vtrapNA( _threadargsprotocomma_ double ); /* declare global and static user variables */ #define anC anC_gaines_sensory_stin double anC = 1.1; #define anB anB_gaines_sensory_stin double anB = -83.2; #define anA anA_gaines_sensory_stin double anA = 0.0462; #define aqC aqC_gaines_sensory_stin double aqC = -12.2; #define aqB aqB_gaines_sensory_stin double aqB = -94.2; #define aqA aqA_gaines_sensory_stin double aqA = 0.00522; #define asC asC_gaines_sensory_stin double asC = -5; #define asB asB_gaines_sensory_stin double asB = -27; #define asA asA_gaines_sensory_stin double asA = 0.3; #define bnC bnC_gaines_sensory_stin double bnC = 10.5; #define bnB bnB_gaines_sensory_stin double bnB = -66; #define bnA bnA_gaines_sensory_stin double bnA = 0.0824; #define bqC bqC_gaines_sensory_stin double bqC = -12.2; #define bqB bqB_gaines_sensory_stin double bqB = -94.2; #define bqA bqA_gaines_sensory_stin double bqA = 0.00522; #define bsC bsC_gaines_sensory_stin double bsC = -1; #define bsB bsB_gaines_sensory_stin double bsB = 10; #define bsA bsA_gaines_sensory_stin double bsA = 0.03; #define vtraub vtraub_gaines_sensory_stin double vtraub = -80; /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "gkbar_gaines_sensory_stin", "mho/cm2", "gl_gaines_sensory_stin", "mho/cm2", "gq_gaines_sensory_stin", "mho/cm2", "gkf_gaines_sensory_stin", "mho/cm2", "ek_gaines_sensory_stin", "mV", "el_gaines_sensory_stin", "mV", "eq_gaines_sensory_stin", "mV", "ekf_gaines_sensory_stin", "mV", "ik_gaines_sensory_stin", "mA/cm2", "il_gaines_sensory_stin", "mA/cm2", "iq_gaines_sensory_stin", "mA/cm2", "ikf_gaines_sensory_stin", "mA/cm2", 0,0 }; static double delta_t = 1; static double n0 = 0; static double q0 = 0; static double s0 = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { "vtraub_gaines_sensory_stin", &vtraub_gaines_sensory_stin, "asA_gaines_sensory_stin", &asA_gaines_sensory_stin, "asB_gaines_sensory_stin", &asB_gaines_sensory_stin, "asC_gaines_sensory_stin", &asC_gaines_sensory_stin, "bsA_gaines_sensory_stin", &bsA_gaines_sensory_stin, "bsB_gaines_sensory_stin", &bsB_gaines_sensory_stin, "bsC_gaines_sensory_stin", &bsC_gaines_sensory_stin, "aqA_gaines_sensory_stin", &aqA_gaines_sensory_stin, "aqB_gaines_sensory_stin", &aqB_gaines_sensory_stin, "aqC_gaines_sensory_stin", &aqC_gaines_sensory_stin, "bqA_gaines_sensory_stin", &bqA_gaines_sensory_stin, "bqB_gaines_sensory_stin", &bqB_gaines_sensory_stin, "bqC_gaines_sensory_stin", &bqC_gaines_sensory_stin, "anA_gaines_sensory_stin", &anA_gaines_sensory_stin, "anB_gaines_sensory_stin", &anB_gaines_sensory_stin, "anC_gaines_sensory_stin", &anC_gaines_sensory_stin, "bnA_gaines_sensory_stin", &bnA_gaines_sensory_stin, "bnB_gaines_sensory_stin", &bnB_gaines_sensory_stin, "bnC_gaines_sensory_stin", &bnC_gaines_sensory_stin, 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static void nrn_alloc(Prop*); static void nrn_init(_NrnThread*, _Memb_list*, int); static void nrn_state(_NrnThread*, _Memb_list*, int); static void nrn_cur(_NrnThread*, _Memb_list*, int); static void nrn_jacob(_NrnThread*, _Memb_list*, int); static int _ode_count(int); static void _ode_map(int, double**, double**, double*, Datum*, double*, int); static void _ode_spec(_NrnThread*, _Memb_list*, int); static void _ode_matsol(_NrnThread*, _Memb_list*, int); #define _cvode_ieq _ppvar[0]._i static void _ode_matsol_instance1(_threadargsproto_); /* connect range variables in _p that hoc is supposed to know about */ static const char *_mechanism[] = { "7.5.0", "gaines_sensory_stin", "gkbar_gaines_sensory_stin", "gl_gaines_sensory_stin", "gq_gaines_sensory_stin", "gkf_gaines_sensory_stin", "ek_gaines_sensory_stin", "el_gaines_sensory_stin", "eq_gaines_sensory_stin", "ekf_gaines_sensory_stin", 0, "ik_gaines_sensory_stin", "il_gaines_sensory_stin", "iq_gaines_sensory_stin", "ikf_gaines_sensory_stin", "s_inf_gaines_sensory_stin", "q_inf_gaines_sensory_stin", "n_inf_gaines_sensory_stin", "tau_s_gaines_sensory_stin", "tau_q_gaines_sensory_stin", "tau_n_gaines_sensory_stin", 0, "s_gaines_sensory_stin", "q_gaines_sensory_stin", "n_gaines_sensory_stin", 0, 0}; extern Prop* need_memb(Symbol*); static void nrn_alloc(Prop* _prop) { Prop *prop_ion; double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 29, _prop); /*initialize range parameters*/ gkbar = 0.001324; gl = 0.0001716; gq = 0.003102; gkf = 0.02737; ek = -90; el = -90; eq = -54.9; ekf = -90; _prop->param = _p; _prop->param_size = 29; _ppvar = nrn_prop_datum_alloc(_mechtype, 1, _prop); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ } static void _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; extern Symbol* hoc_lookup(const char*); extern void _nrn_thread_reg(int, int, void(*)(Datum*)); extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int)); extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***); extern void _cvode_abstol( Symbol**, double*, int); void _gaines_sensory_stin_reg() { int _vectorized = 1; _initlists(); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1); _mechtype = nrn_get_mechtype(_mechanism[1]); _nrn_setdata_reg(_mechtype, _setdata); hoc_register_prop_size(_mechtype, 29, 1); hoc_register_dparam_semantics(_mechtype, 0, "cvodeieq"); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 gaines_sensory_stin /home/mcapll/JA1/simulations/stimulation_ja1_revisions/monophasic/current_00500nA/EC/x86_64/gaines_sensory_stin.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static int _reset; static char *modelname = "Sensory Axon Stin channels"; static int error; static int _ninits = 0; static int _match_recurse=1; static void _modl_cleanup(){ _match_recurse=1;} static int evaluate_fct(_threadargsprotocomma_ double); static int _ode_spec1(_threadargsproto_); /*static int _ode_matsol1(_threadargsproto_);*/ static int _slist1[3], _dlist1[3]; static int states(_threadargsproto_); /*CVODE*/ static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; { evaluate_fct ( _threadargscomma_ v ) ; Ds = ( s_inf - s ) / tau_s ; Dq = ( q_inf - q ) / tau_q ; Dn = ( n_inf - n ) / tau_n ; } return _reset; } static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { evaluate_fct ( _threadargscomma_ v ) ; Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_s )) ; Dq = Dq / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_q )) ; Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_n )) ; return 0; } /*END CVODE*/ static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { { evaluate_fct ( _threadargscomma_ v ) ; s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_s)))*(- ( ( ( s_inf ) ) / tau_s ) / ( ( ( ( - 1.0 ) ) ) / tau_s ) - s) ; q = q + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_q)))*(- ( ( ( q_inf ) ) / tau_q ) / ( ( ( ( - 1.0 ) ) ) / tau_q ) - q) ; n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_n)))*(- ( ( ( n_inf ) ) / tau_n ) / ( ( ( ( - 1.0 ) ) ) / tau_n ) - n) ; } return 0; } static int evaluate_fct ( _threadargsprotocomma_ double _lv ) { double _la , _lb , _lv2 ; _lv2 = _lv - vtraub ; _la = q10_3 * asA / ( Exp ( _threadargscomma_ ( _lv2 + asB ) / asC ) + 1.0 ) ; _lb = q10_3 * bsA / ( Exp ( _threadargscomma_ ( _lv2 + bsB ) / bsC ) + 1.0 ) ; tau_s = 1.0 / ( _la + _lb ) ; s_inf = _la / ( _la + _lb ) ; _la = q10_3 * aqA * ( Exp ( _threadargscomma_ ( _lv - aqB ) / aqC ) ) ; _lb = q10_3 * bqA / ( Exp ( _threadargscomma_ ( _lv - bqB ) / bqC ) ) ; tau_q = 1.0 / ( _la + _lb ) ; q_inf = _la / ( _la + _lb ) ; _la = q10_3 * vtrapNA ( _threadargscomma_ _lv ) ; _lb = q10_3 * vtrapNB ( _threadargscomma_ _lv ) ; tau_n = 1.0 / ( _la + _lb ) ; n_inf = _la / ( _la + _lb ) ; return 0; } static void _hoc_evaluate_fct(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = 1.; evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrapNA ( _threadargsprotocomma_ double _lx ) { double _lvtrapNA; if ( fabs ( ( anB - _lx ) / anC ) < 1e-6 ) { _lvtrapNA = anA * anC ; } else { _lvtrapNA = anA * ( v - anB ) / ( 1.0 - Exp ( _threadargscomma_ ( anB - v ) / anC ) ) ; } return _lvtrapNA; } static void _hoc_vtrapNA(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrapNA ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrapNB ( _threadargsprotocomma_ double _lx ) { double _lvtrapNB; if ( fabs ( ( _lx - bnB ) / bnC ) < 1e-6 ) { _lvtrapNB = bnA * bnC ; } else { _lvtrapNB = bnA * ( bnB - v ) / ( 1.0 - Exp ( _threadargscomma_ ( v - bnB ) / bnC ) ) ; } return _lvtrapNB; } static void _hoc_vtrapNB(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrapNB ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double Exp ( _threadargsprotocomma_ double _lx ) { double _lExp; if ( _lx < - 100.0 ) { _lExp = 0.0 ; } else { _lExp = exp ( _lx ) ; } return _lExp; } static void _hoc_Exp(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = Exp ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } static int _ode_count(int _type){ return 3;} static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_spec1 (_p, _ppvar, _thread, _nt); }} static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { double* _p; Datum* _ppvar; int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 3; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static void _ode_matsol_instance1(_threadargsproto_) { _ode_matsol1 (_p, _ppvar, _thread, _nt); } static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_matsol_instance1(_threadargs_); }} static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { int _i; double _save;{ n = n0; q = q0; s = s0; { q10_1 = pow( 2.2 , ( ( celsius - 20.0 ) / 10.0 ) ) ; q10_2 = pow( 2.9 , ( ( celsius - 20.0 ) / 10.0 ) ) ; q10_3 = pow( 3.0 , ( ( celsius - 36.0 ) / 10.0 ) ) ; evaluate_fct ( _threadargscomma_ v ) ; s = s_inf ; q = q_inf ; n = n_inf ; } } } static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){ double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; initmodel(_p, _ppvar, _thread, _nt); } } static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ { ik = gkbar * s * ( v - ek ) ; il = gl * ( v - el ) ; iq = gq * q * ( v - eq ) ; ikf = gkf * n * n * n * n * ( v - ekf ) ; } _current += ik; _current += il; _current += iq; _current += ikf; } return _current; } static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001); { _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v); } _g = (_g - _rhs)/.001; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } } } static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } } } static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v=_v; { { states(_p, _ppvar, _thread, _nt); }}} } static void terminal(){} static void _initlists(){ double _x; double* _p = &_x; int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(s) - _p; _dlist1[0] = &(Ds) - _p; _slist1[1] = &(q) - _p; _dlist1[1] = &(Dq) - _p; _slist1[2] = &(n) - _p; _dlist1[2] = &(Dn) - _p; _first = 0; } #if defined(__cplusplus) } /* extern "C" */ #endif