/* Created by Language version: 7.5.0 */ /* VECTORIZED */ #define NRN_VECTORIZED 1 #include #include #include #include "scoplib_ansi.h" #undef PI #define nil 0 #include "md1redef.h" #include "section.h" #include "nrniv_mf.h" #include "md2redef.h" #if METHOD3 extern int _method3; #endif #if !NRNGPU #undef exp #define exp hoc_Exp extern double hoc_Exp(double); #endif #define nrn_init _nrn_init__mrg_axnode #define _nrn_initial _nrn_initial__mrg_axnode #define nrn_cur _nrn_cur__mrg_axnode #define _nrn_current _nrn_current__mrg_axnode #define nrn_jacob _nrn_jacob__mrg_axnode #define nrn_state _nrn_state__mrg_axnode #define _net_receive _net_receive__mrg_axnode #define evaluate_fct evaluate_fct__mrg_axnode #define states states__mrg_axnode #define _threadargscomma_ _p, _ppvar, _thread, _nt, #define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, #define _threadargs_ _p, _ppvar, _thread, _nt #define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt /*SUPPRESS 761*/ /*SUPPRESS 762*/ /*SUPPRESS 763*/ /*SUPPRESS 765*/ extern double *getarg(); /* Thread safe. No static _p or _ppvar. */ #define t _nt->_t #define dt _nt->_dt #define gnapbar _p[0] #define gnabar _p[1] #define gkbar _p[2] #define gl _p[3] #define ena _p[4] #define ek _p[5] #define el _p[6] #define inap _p[7] #define ina _p[8] #define ik _p[9] #define il _p[10] #define mp_inf _p[11] #define m_inf _p[12] #define h_inf _p[13] #define s_inf _p[14] #define tau_mp _p[15] #define tau_m _p[16] #define tau_h _p[17] #define tau_s _p[18] #define mp _p[19] #define m _p[20] #define h _p[21] #define s _p[22] #define Dmp _p[23] #define Dm _p[24] #define Dh _p[25] #define Ds _p[26] #define q10_1 _p[27] #define q10_2 _p[28] #define q10_3 _p[29] #define v _p[30] #define _g _p[31] #if MAC #if !defined(v) #define v _mlhv #endif #if !defined(h) #define h _mlhh #endif #endif #if defined(__cplusplus) extern "C" { #endif static int hoc_nrnpointerindex = -1; static Datum* _extcall_thread; static Prop* _extcall_prop; /* external NEURON variables */ extern double celsius; /* declaration of user functions */ static void _hoc_Exp(void); static void _hoc_evaluate_fct(void); static void _hoc_vtrap(void); static void _hoc_vtrap8(void); static void _hoc_vtrap7(void); static void _hoc_vtrap6(void); static void _hoc_vtrap2(void); static void _hoc_vtrap1(void); static int _mechtype; extern void _nrn_cacheloop_reg(int, int); extern void hoc_register_prop_size(int, int, int); extern void hoc_register_limits(int, HocParmLimits*); extern void hoc_register_units(int, HocParmUnits*); extern void nrn_promote(Prop*, int, int); extern Memb_func* memb_func; extern void _nrn_setdata_reg(int, void(*)(Prop*)); static void _setdata(Prop* _prop) { _extcall_prop = _prop; } static void _hoc_setdata() { Prop *_prop, *hoc_getdata_range(int); _prop = hoc_getdata_range(_mechtype); _setdata(_prop); hoc_retpushx(1.); } /* connect user functions to hoc names */ static VoidFunc hoc_intfunc[] = { "setdata_mrg_axnode", _hoc_setdata, "Exp_mrg_axnode", _hoc_Exp, "evaluate_fct_mrg_axnode", _hoc_evaluate_fct, "vtrap_mrg_axnode", _hoc_vtrap, "vtrap8_mrg_axnode", _hoc_vtrap8, "vtrap7_mrg_axnode", _hoc_vtrap7, "vtrap6_mrg_axnode", _hoc_vtrap6, "vtrap2_mrg_axnode", _hoc_vtrap2, "vtrap1_mrg_axnode", _hoc_vtrap1, 0, 0 }; #define Exp Exp_mrg_axnode #define vtrap vtrap_mrg_axnode #define vtrap8 vtrap8_mrg_axnode #define vtrap7 vtrap7_mrg_axnode #define vtrap6 vtrap6_mrg_axnode #define vtrap2 vtrap2_mrg_axnode #define vtrap1 vtrap1_mrg_axnode extern double Exp( _threadargsprotocomma_ double ); extern double vtrap( _threadargsprotocomma_ double ); extern double vtrap8( _threadargsprotocomma_ double ); extern double vtrap7( _threadargsprotocomma_ double ); extern double vtrap6( _threadargsprotocomma_ double ); extern double vtrap2( _threadargsprotocomma_ double ); extern double vtrap1( _threadargsprotocomma_ double ); /* declare global and static user variables */ #define asC asC_mrg_axnode double asC = -5; #define asB asB_mrg_axnode double asB = -27; #define asA asA_mrg_axnode double asA = 0.3; #define ahC ahC_mrg_axnode double ahC = 11; #define ahB ahB_mrg_axnode double ahB = 114; #define ahA ahA_mrg_axnode double ahA = 0.062; #define amC amC_mrg_axnode double amC = 10.3; #define amB amB_mrg_axnode double amB = 21.4; #define amA amA_mrg_axnode double amA = 1.86; #define ampC ampC_mrg_axnode double ampC = 10.2; #define ampB ampB_mrg_axnode double ampB = 27; #define ampA ampA_mrg_axnode double ampA = 0.01; #define bsC bsC_mrg_axnode double bsC = -1; #define bsB bsB_mrg_axnode double bsB = 10; #define bsA bsA_mrg_axnode double bsA = 0.03; #define bhC bhC_mrg_axnode double bhC = 13.4; #define bhB bhB_mrg_axnode double bhB = 31.8; #define bhA bhA_mrg_axnode double bhA = 2.3; #define bmC bmC_mrg_axnode double bmC = 9.16; #define bmB bmB_mrg_axnode double bmB = 25.7; #define bmA bmA_mrg_axnode double bmA = 0.086; #define bmpC bmpC_mrg_axnode double bmpC = 10; #define bmpB bmpB_mrg_axnode double bmpB = 34; #define bmpA bmpA_mrg_axnode double bmpA = 0.00025; #define vtraub vtraub_mrg_axnode double vtraub = -80; /* some parameters have upper and lower limits */ static HocParmLimits _hoc_parm_limits[] = { 0,0,0 }; static HocParmUnits _hoc_parm_units[] = { "gnapbar_mrg_axnode", "mho/cm2", "gnabar_mrg_axnode", "mho/cm2", "gkbar_mrg_axnode", "mho/cm2", "gl_mrg_axnode", "mho/cm2", "ena_mrg_axnode", "mV", "ek_mrg_axnode", "mV", "el_mrg_axnode", "mV", "inap_mrg_axnode", "mA/cm2", "ina_mrg_axnode", "mA/cm2", "ik_mrg_axnode", "mA/cm2", "il_mrg_axnode", "mA/cm2", 0,0 }; static double delta_t = 1; static double h0 = 0; static double m0 = 0; static double mp0 = 0; static double s0 = 0; /* connect global user variables to hoc */ static DoubScal hoc_scdoub[] = { "vtraub_mrg_axnode", &vtraub_mrg_axnode, "ampA_mrg_axnode", &A_mrg_axnode, "ampB_mrg_axnode", &B_mrg_axnode, "ampC_mrg_axnode", &C_mrg_axnode, "bmpA_mrg_axnode", &bmpA_mrg_axnode, "bmpB_mrg_axnode", &bmpB_mrg_axnode, "bmpC_mrg_axnode", &bmpC_mrg_axnode, "amA_mrg_axnode", &amA_mrg_axnode, "amB_mrg_axnode", &amB_mrg_axnode, "amC_mrg_axnode", &amC_mrg_axnode, "bmA_mrg_axnode", &bmA_mrg_axnode, "bmB_mrg_axnode", &bmB_mrg_axnode, "bmC_mrg_axnode", &bmC_mrg_axnode, "ahA_mrg_axnode", &ahA_mrg_axnode, "ahB_mrg_axnode", &ahB_mrg_axnode, "ahC_mrg_axnode", &ahC_mrg_axnode, "bhA_mrg_axnode", &bhA_mrg_axnode, "bhB_mrg_axnode", &bhB_mrg_axnode, "bhC_mrg_axnode", &bhC_mrg_axnode, "asA_mrg_axnode", &asA_mrg_axnode, "asB_mrg_axnode", &asB_mrg_axnode, "asC_mrg_axnode", &asC_mrg_axnode, "bsA_mrg_axnode", &bsA_mrg_axnode, "bsB_mrg_axnode", &bsB_mrg_axnode, "bsC_mrg_axnode", &bsC_mrg_axnode, 0,0 }; static DoubVec hoc_vdoub[] = { 0,0,0 }; static double _sav_indep; static void nrn_alloc(Prop*); static void nrn_init(_NrnThread*, _Memb_list*, int); static void nrn_state(_NrnThread*, _Memb_list*, int); static void nrn_cur(_NrnThread*, _Memb_list*, int); static void nrn_jacob(_NrnThread*, _Memb_list*, int); static int _ode_count(int); static void _ode_map(int, double**, double**, double*, Datum*, double*, int); static void _ode_spec(_NrnThread*, _Memb_list*, int); static void _ode_matsol(_NrnThread*, _Memb_list*, int); #define _cvode_ieq _ppvar[0]._i static void _ode_matsol_instance1(_threadargsproto_); /* connect range variables in _p that hoc is supposed to know about */ static const char *_mechanism[] = { "7.5.0", "mrg_axnode", "gnapbar_mrg_axnode", "gnabar_mrg_axnode", "gkbar_mrg_axnode", "gl_mrg_axnode", "ena_mrg_axnode", "ek_mrg_axnode", "el_mrg_axnode", 0, "inap_mrg_axnode", "ina_mrg_axnode", "ik_mrg_axnode", "il_mrg_axnode", "mp_inf_mrg_axnode", "m_inf_mrg_axnode", "h_inf_mrg_axnode", "s_inf_mrg_axnode", "tau_mp_mrg_axnode", "tau_m_mrg_axnode", "tau_h_mrg_axnode", "tau_s_mrg_axnode", 0, "mp_mrg_axnode", "m_mrg_axnode", "h_mrg_axnode", "s_mrg_axnode", 0, 0}; extern Prop* need_memb(Symbol*); static void nrn_alloc(Prop* _prop) { Prop *prop_ion; double *_p; Datum *_ppvar; _p = nrn_prop_data_alloc(_mechtype, 32, _prop); /*initialize range parameters*/ gnapbar = 0.01; gnabar = 3; gkbar = 0.08; gl = 0.007; ena = 50; ek = -90; el = -90; _prop->param = _p; _prop->param_size = 32; _ppvar = nrn_prop_datum_alloc(_mechtype, 1, _prop); _prop->dparam = _ppvar; /*connect ionic variables to this model*/ } static void _initlists(); /* some states have an absolute tolerance */ static Symbol** _atollist; static HocStateTolerance _hoc_state_tol[] = { 0,0 }; extern Symbol* hoc_lookup(const char*); extern void _nrn_thread_reg(int, int, void(*)(Datum*)); extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int)); extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***); extern void _cvode_abstol( Symbol**, double*, int); void _MRG_AXNODE_reg() { int _vectorized = 1; _initlists(); register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1); _mechtype = nrn_get_mechtype(_mechanism[1]); _nrn_setdata_reg(_mechtype, _setdata); hoc_register_prop_size(_mechtype, 32, 1); hoc_register_dparam_semantics(_mechtype, 0, "cvodeieq"); hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol); hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist); hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc); ivoc_help("help ?1 mrg_axnode /home/miguel/Desktop/Workbench/work/phd/JA1_results/revisions_round_2/propagation_study/scenario009/isolated_walls/scenario009_noEC/x86_64/MRG_AXNODE.mod\n"); hoc_register_limits(_mechtype, _hoc_parm_limits); hoc_register_units(_mechtype, _hoc_parm_units); } static int _reset; static char *modelname = "Motor Axon Node channels"; static int error; static int _ninits = 0; static int _match_recurse=1; static void _modl_cleanup(){ _match_recurse=1;} static int evaluate_fct(_threadargsprotocomma_ double); static int _ode_spec1(_threadargsproto_); /*static int _ode_matsol1(_threadargsproto_);*/ static int _slist1[4], _dlist1[4]; static int states(_threadargsproto_); /*CVODE*/ static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; { evaluate_fct ( _threadargscomma_ v ) ; Dmp = ( mp_inf - mp ) / tau_mp ; Dm = ( m_inf - m ) / tau_m ; Dh = ( h_inf - h ) / tau_h ; Ds = ( s_inf - s ) / tau_s ; } return _reset; } static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { evaluate_fct ( _threadargscomma_ v ) ; Dmp = Dmp / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_mp )) ; Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ; Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_h )) ; Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_s )) ; return 0; } /*END CVODE*/ static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { { evaluate_fct ( _threadargscomma_ v ) ; mp = mp + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_mp)))*(- ( ( ( mp_inf ) ) / tau_mp ) / ( ( ( ( - 1.0 ) ) ) / tau_mp ) - mp) ; m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ; h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ; s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_s)))*(- ( ( ( s_inf ) ) / tau_s ) / ( ( ( ( - 1.0 ) ) ) / tau_s ) - s) ; } return 0; } static int evaluate_fct ( _threadargsprotocomma_ double _lv ) { double _la , _lb , _lv2 ; _la = q10_1 * vtrap1 ( _threadargscomma_ _lv ) ; _lb = q10_1 * vtrap2 ( _threadargscomma_ _lv ) ; tau_mp = 1.0 / ( _la + _lb ) ; mp_inf = _la / ( _la + _lb ) ; _la = q10_1 * vtrap6 ( _threadargscomma_ _lv ) ; _lb = q10_1 * vtrap7 ( _threadargscomma_ _lv ) ; tau_m = 1.0 / ( _la + _lb ) ; m_inf = _la / ( _la + _lb ) ; _la = q10_2 * vtrap8 ( _threadargscomma_ _lv ) ; _lb = q10_2 * bhA / ( 1.0 + Exp ( _threadargscomma_ - ( _lv + bhB ) / bhC ) ) ; tau_h = 1.0 / ( _la + _lb ) ; h_inf = _la / ( _la + _lb ) ; _lv2 = _lv - vtraub ; _la = q10_3 * asA / ( Exp ( _threadargscomma_ ( _lv2 + asB ) / asC ) + 1.0 ) ; _lb = q10_3 * bsA / ( Exp ( _threadargscomma_ ( _lv2 + bsB ) / bsC ) + 1.0 ) ; tau_s = 1.0 / ( _la + _lb ) ; s_inf = _la / ( _la + _lb ) ; return 0; } static void _hoc_evaluate_fct(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = 1.; evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap ( _threadargsprotocomma_ double _lx ) { double _lvtrap; if ( _lx < - 50.0 ) { _lvtrap = 0.0 ; } else { _lvtrap = bsA / ( Exp ( _threadargscomma_ ( _lx + bsB ) / bsC ) + 1.0 ) ; } return _lvtrap; } static void _hoc_vtrap(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap1 ( _threadargsprotocomma_ double _lx ) { double _lvtrap1; if ( fabs ( ( _lx + ampB ) / ampC ) < 1e-6 ) { _lvtrap1 = ampA * ampC ; } else { _lvtrap1 = ( ampA * ( _lx + ampB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + ampB ) / ampC ) ) ; } return _lvtrap1; } static void _hoc_vtrap1(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap1 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap2 ( _threadargsprotocomma_ double _lx ) { double _lvtrap2; if ( fabs ( ( _lx + bmpB ) / bmpC ) < 1e-6 ) { _lvtrap2 = bmpA * bmpC ; } else { _lvtrap2 = ( bmpA * ( - ( _lx + bmpB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmpB ) / bmpC ) ) ; } return _lvtrap2; } static void _hoc_vtrap2(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap2 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap6 ( _threadargsprotocomma_ double _lx ) { double _lvtrap6; if ( fabs ( ( _lx + amB ) / amC ) < 1e-6 ) { _lvtrap6 = amA * amC ; } else { _lvtrap6 = ( amA * ( _lx + amB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + amB ) / amC ) ) ; } return _lvtrap6; } static void _hoc_vtrap6(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap6 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap7 ( _threadargsprotocomma_ double _lx ) { double _lvtrap7; if ( fabs ( ( _lx + bmB ) / bmC ) < 1e-6 ) { _lvtrap7 = bmA * bmC ; } else { _lvtrap7 = ( bmA * ( - ( _lx + bmB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmB ) / bmC ) ) ; } return _lvtrap7; } static void _hoc_vtrap7(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap7 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double vtrap8 ( _threadargsprotocomma_ double _lx ) { double _lvtrap8; if ( fabs ( ( _lx + ahB ) / ahC ) < 1e-6 ) { _lvtrap8 = ahA * ahC ; } else { _lvtrap8 = ( ahA * ( - ( _lx + ahB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + ahB ) / ahC ) ) ; } return _lvtrap8; } static void _hoc_vtrap8(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = vtrap8 ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } double Exp ( _threadargsprotocomma_ double _lx ) { double _lExp; if ( _lx < - 100.0 ) { _lExp = 0.0 ; } else { _lExp = exp ( _lx ) ; } return _lExp; } static void _hoc_Exp(void) { double _r; double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; } _thread = _extcall_thread; _nt = nrn_threads; _r = Exp ( _p, _ppvar, _thread, _nt, *getarg(1) ); hoc_retpushx(_r); } static int _ode_count(int _type){ return 4;} static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_spec1 (_p, _ppvar, _thread, _nt); }} static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { double* _p; Datum* _ppvar; int _i; _p = _pp; _ppvar = _ppd; _cvode_ieq = _ieq; for (_i=0; _i < 4; ++_i) { _pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i]; _cvode_abstol(_atollist, _atol, _i); } } static void _ode_matsol_instance1(_threadargsproto_) { _ode_matsol1 (_p, _ppvar, _thread, _nt); } static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node* _nd; double _v; int _iml, _cntml; _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; v = NODEV(_nd); _ode_matsol_instance1(_threadargs_); }} static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { int _i; double _save;{ h = h0; m = m0; mp = mp0; s = s0; { q10_1 = pow( 2.2 , ( ( celsius - 20.0 ) / 10.0 ) ) ; q10_2 = pow( 2.9 , ( ( celsius - 20.0 ) / 10.0 ) ) ; q10_3 = pow( 3.0 , ( ( celsius - 36.0 ) / 10.0 ) ) ; evaluate_fct ( _threadargscomma_ v ) ; mp = mp_inf ; m = m_inf ; h = h_inf ; s = s_inf ; } } } static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){ double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v = _v; initmodel(_p, _ppvar, _thread, _nt); } } static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ { inap = gnapbar * mp * mp * mp * ( v - ena ) ; ina = gnabar * m * m * m * h * ( v - ena ) ; ik = gkbar * s * ( v - ek ) ; il = gl * ( v - el ) ; } _current += ina; _current += inap; _current += ik; _current += il; } return _current; } static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001); { _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v); } _g = (_g - _rhs)/.001; #if CACHEVEC if (use_cachevec) { VEC_RHS(_ni[_iml]) -= _rhs; }else #endif { NODERHS(_nd) -= _rhs; } } } static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; #if CACHEVEC if (use_cachevec) { VEC_D(_ni[_iml]) += _g; }else #endif { _nd = _ml->_nodelist[_iml]; NODED(_nd) += _g; } } } static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) { double* _p; Datum* _ppvar; Datum* _thread; Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml; #if CACHEVEC _ni = _ml->_nodeindices; #endif _cntml = _ml->_nodecount; _thread = _ml->_thread; for (_iml = 0; _iml < _cntml; ++_iml) { _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml]; _nd = _ml->_nodelist[_iml]; #if CACHEVEC if (use_cachevec) { _v = VEC_V(_ni[_iml]); }else #endif { _nd = _ml->_nodelist[_iml]; _v = NODEV(_nd); } v=_v; { { states(_p, _ppvar, _thread, _nt); }}} } static void terminal(){} static void _initlists(){ double _x; double* _p = &_x; int _i; static int _first = 1; if (!_first) return; _slist1[0] = &(mp) - _p; _dlist1[0] = &(Dmp) - _p; _slist1[1] = &(m) - _p; _dlist1[1] = &(Dm) - _p; _slist1[2] = &(h) - _p; _dlist1[2] = &(Dh) - _p; _slist1[3] = &(s) - _p; _dlist1[3] = &(Ds) - _p; _first = 0; } #if defined(__cplusplus) } /* extern "C" */ #endif