// This script is used to search the synaptic parameter space of the IS3 model by varying the number of excitatory and inhibitory synapses as well as their presynaptic spike rates load_file("nrngui.hoc") load_file("IS3_M2_Case8StarRevised.hoc") // Loads IS3 model with full morphology & properties (as well as parameters and point processes) // Initialize theta synapses (precise number not needed so just 500 indices should be fine since this is more than the number of compartments in the model) objectvar ExcThetaSRsyns[500], ExcThetaSLMsyns[500], ExcThetaSRsynsNCS[500], ExcThetaSLMsynsNCS[500], ExcThetaSRsynsNSS[500], ExcThetaSLMsynsNSS[500] objectvar InhThetaSRsyns90[500], InhThetaSRsyns180[500], InhThetaSRsyns270[500], InhThetaSLMsyns90[500], InhThetaSLMsyns180[500], InhThetaSLMsyns270[500] objectvar InhThetaSRsyns90NCS[500], InhThetaSRsyns180NCS[500], InhThetaSRsyns270NCS[500], InhThetaSLMsyns90NCS[500], InhThetaSLMsyns180NCS[500], InhThetaSLMsyns270NCS[500] objectvar InhThetaSRsyns90NSS[500], InhThetaSRsyns180NSS[500], InhThetaSRsyns270NSS[500], InhThetaSLMsyns90NSS[500], InhThetaSLMsyns180NSS[500], InhThetaSLMsyns270NSS[500] SRexcsyncount = 0 SLMexcsyncount = 0 inhsyncount = 0 thetaSRcount = 0 thetaSLMcount = 0 count = 0 // for indexing purposes to do with the input vectors for (dendn = 0; dendn<=57; dendn = dendn+1){ print "Section Number: ", dendn_vec.x[dendn] for (i = 1; i<=dend[dendn].nseg; i = i+1) { if (dendn > 17 && dendn < 23) { // Skip putting synapses on axonal segments count = count + 1 break } // Specifies proportion along section (i.e. from 0 to 1) prop = ((dend[dendn].L/dend[dendn].nseg)*i - (dend[dendn].L/dend[dendn].nseg)/2)/dend[dendn].L // finds the center of each segment, as defined by its proportional distance along each section; (prop = (i-0.5)/dend[dendn].nseg also works) // Assign optimized synapse parameter values to 9 excitatory synapses on the compartment if in SR access dend[dendn] if (distance(prop)<=300) { for (l = 1; l<=9; l = l + 1){ SRexcsynapses[SRexcsyncount] = new Exp2Syn(prop) dend[dendn] SRexcsynapses[SRexcsyncount].loc(prop) // assign to current compartment SRexcsynapses[SRexcsyncount].tau1 = 2.9936e-04 SRexcsynapses[SRexcsyncount].tau2 = 2.4216 SRexcsynapses[SRexcsyncount].e = 0 SRexcnss[SRexcsyncount] = new VecStim(prop) SRexcncs[SRexcsyncount] = new NetCon(SRexcnss[SRexcsyncount], SRexcsynapses[SRexcsyncount]) SRexcncs[SRexcsyncount].weight = 0.00000230814*distance(prop) + 0.00022016666 SRexcsyncount = SRexcsyncount + 1 } // THETA SYNAPSES ExcThetaSRsyns[thetaSRcount] = new Exp2Syn(prop) dend[dendn] ExcThetaSRsyns[thetaSRcount].loc(prop) ExcThetaSRsyns[thetaSRcount].tau1 = 2.9936e-04 ExcThetaSRsyns[thetaSRcount].tau2 = 2.4216 ExcThetaSRsyns[thetaSRcount].e = 0 ExcThetaSRsynsNSS[thetaSRcount] = new NetStim(prop) ExcThetaSRsynsNCS[thetaSRcount] = new NetCon(ExcThetaSRsynsNSS[thetaSRcount], ExcThetaSRsyns[thetaSRcount]) ExcThetaSRsynsNCS[thetaSRcount].weight = 0.00000230814*distance(prop) + 0.00022016666 InhThetaSRsyns90[thetaSRcount] = new Exp2Syn(prop) dend[dendn] InhThetaSRsyns90[thetaSRcount].loc(prop) InhThetaSRsyns90[thetaSRcount].tau1 = 0.1013 InhThetaSRsyns90[thetaSRcount].tau2 = 4.8216 InhThetaSRsyns90[thetaSRcount].e = -70 InhThetaSRsyns90NSS[thetaSRcount] = new NetStim(prop) InhThetaSRsyns90NCS[thetaSRcount] = new NetCon(InhThetaSRsyns90NSS[thetaSRcount], InhThetaSRsyns90[thetaSRcount]) InhThetaSRsyns90NCS[thetaSRcount].weight = 0.00000469125*distance(prop) + 0.0002695779 InhThetaSRsyns180[thetaSRcount] = new Exp2Syn(prop) dend[dendn] InhThetaSRsyns180[thetaSRcount].loc(prop) InhThetaSRsyns180[thetaSRcount].tau1 = 0.1013 InhThetaSRsyns180[thetaSRcount].tau2 = 4.8216 InhThetaSRsyns180[thetaSRcount].e = -70 InhThetaSRsyns180NSS[thetaSRcount] = new NetStim(prop) InhThetaSRsyns180NCS[thetaSRcount] = new NetCon(InhThetaSRsyns180NSS[thetaSRcount], InhThetaSRsyns180[thetaSRcount]) InhThetaSRsyns180NCS[thetaSRcount].weight = 0.00000469125*distance(prop) + 0.0002695779 InhThetaSRsyns270[thetaSRcount] = new Exp2Syn(prop) dend[dendn] InhThetaSRsyns270[thetaSRcount].loc(prop) InhThetaSRsyns270[thetaSRcount].tau1 = 0.1013 InhThetaSRsyns270[thetaSRcount].tau2 = 4.8216 InhThetaSRsyns270[thetaSRcount].e = -70 InhThetaSRsyns270NSS[thetaSRcount] = new NetStim(prop) InhThetaSRsyns270NCS[thetaSRcount] = new NetCon(InhThetaSRsyns270NSS[thetaSRcount], InhThetaSRsyns270[thetaSRcount]) InhThetaSRsyns270NCS[thetaSRcount].weight = 0.00000469125*distance(prop) + 0.0002695779 thetaSRcount = thetaSRcount + 1 } // Assign optimized synapse parameter values to 9 excitatory synapses on the compartment if in SLM if (distance(prop)>300) { // i.e. if greater than 300 um away from soma for (l = 1; l<=9; l = l + 1){ SLMexcsynapses[SLMexcsyncount] = new Exp2Syn(prop) dend[dendn] SLMexcsynapses[SLMexcsyncount].loc(prop) // assign to current compartment SLMexcsynapses[SLMexcsyncount].tau1 = 6.1871e-04 SLMexcsynapses[SLMexcsyncount].tau2 = 3.1975 SLMexcsynapses[SLMexcsyncount].e = 0 SLMexcnss[SLMexcsyncount] = new VecStim(prop) SLMexcncs[SLMexcsyncount] = new NetCon(SLMexcnss[SLMexcsyncount], SLMexcsynapses[SLMexcsyncount]) SLMexcncs[SLMexcsyncount].weight = 0.00000230814*distance(prop) + 0.00022016666 SLMexcsyncount = SLMexcsyncount + 1 } // THETA SYNAPSES ExcThetaSLMsyns[thetaSLMcount] = new Exp2Syn(prop) dend[dendn] ExcThetaSLMsyns[thetaSLMcount].loc(prop) ExcThetaSLMsyns[thetaSLMcount].tau1 = 6.1871e-04 ExcThetaSLMsyns[thetaSLMcount].tau2 = 3.1975 ExcThetaSLMsyns[thetaSLMcount].e = 0 ExcThetaSLMsynsNSS[thetaSLMcount] = new NetStim(prop) ExcThetaSLMsynsNCS[thetaSLMcount] = new NetCon(ExcThetaSLMsynsNSS[thetaSLMcount], ExcThetaSLMsyns[thetaSLMcount]) ExcThetaSLMsynsNCS[thetaSLMcount].weight = 0.00000230814*distance(prop) + 0.00022016666 InhThetaSLMsyns90[thetaSLMcount] = new Exp2Syn(prop) dend[dendn] InhThetaSLMsyns90[thetaSLMcount].loc(prop) InhThetaSLMsyns90[thetaSLMcount].tau1 = 0.1013 InhThetaSLMsyns90[thetaSLMcount].tau2 = 4.8216 InhThetaSLMsyns90[thetaSLMcount].e = -70 InhThetaSLMsyns90NSS[thetaSLMcount] = new NetStim(prop) InhThetaSLMsyns90NCS[thetaSLMcount] = new NetCon(InhThetaSLMsyns90NSS[thetaSLMcount], InhThetaSLMsyns90[thetaSLMcount]) InhThetaSLMsyns90NCS[thetaSLMcount].weight = 0.00000469125*distance(prop) + 0.0002695779 InhThetaSLMsyns180[thetaSLMcount] = new Exp2Syn(prop) dend[dendn] InhThetaSLMsyns180[thetaSLMcount].loc(prop) InhThetaSLMsyns180[thetaSLMcount].tau1 = 0.1013 InhThetaSLMsyns180[thetaSLMcount].tau2 = 4.8216 InhThetaSLMsyns180[thetaSLMcount].e = -70 InhThetaSLMsyns180NSS[thetaSLMcount] = new NetStim(prop) InhThetaSLMsyns180NCS[thetaSLMcount] = new NetCon(InhThetaSLMsyns180NSS[thetaSLMcount], InhThetaSLMsyns180[thetaSLMcount]) InhThetaSLMsyns180NCS[thetaSLMcount].weight = 0.00000469125*distance(prop) + 0.0002695779 InhThetaSLMsyns270[thetaSLMcount] = new Exp2Syn(prop) dend[dendn] InhThetaSLMsyns270[thetaSLMcount].loc(prop) InhThetaSLMsyns270[thetaSLMcount].tau1 = 0.1013 InhThetaSLMsyns270[thetaSLMcount].tau2 = 4.8216 InhThetaSLMsyns270[thetaSLMcount].e = -70 InhThetaSLMsyns270NSS[thetaSLMcount] = new NetStim(prop) InhThetaSLMsyns270NCS[thetaSLMcount] = new NetCon(InhThetaSLMsyns270NSS[thetaSLMcount], InhThetaSLMsyns270[thetaSLMcount]) InhThetaSLMsyns270NCS[thetaSLMcount].weight = 0.00000469125*distance(prop) + 0.0002695779 thetaSLMcount = thetaSLMcount + 1 } // Assign optimized synapse parameter values to 2 inhibitory synapses on the compartment for (m = 1; m<=2; m = m + 1){ inhsynapses[inhsyncount] = new Exp2Syn(prop) dend[dendn] inhsynapses[inhsyncount].loc(prop) // assign to current compartment inhsynapses[inhsyncount].tau1 = 0.1013 inhsynapses[inhsyncount].tau2 = 4.8216 inhsynapses[inhsyncount].e = -70 inhnss[inhsyncount] = new VecStim(prop) inhncs[inhsyncount] = new NetCon(inhnss[inhsyncount], inhsynapses[inhsyncount]) inhncs[inhsyncount].weight = 0.00000469125*distance(prop) + 0.0002695779 inhsyncount = inhsyncount + 1 } count = count + 1 } } // Generate randomized indexing for random synapse selection objref r, randSRexcindex, randSLMexcindex, randinhindex, EXCrandSRtheta, EXCrandSLMtheta objref randSRinhtheta90, randSRinhtheta180, randSRinhtheta270, randSLMinhtheta90, randSLMinhtheta180, randSLMinhtheta270 proc randomize_syns() { r = new Random($1*10 + $2) // Ensures different random seeds for each example and example repeat randSRexcindex = new Vector(nSRexcsyns) randSLMexcindex = new Vector(nSLMexcsyns) EXCrandSRtheta = new Vector(thetaSRcount) randSRinhtheta90 = new Vector(thetaSRcount) randSRinhtheta180 = new Vector(thetaSRcount) randSRinhtheta270 = new Vector(thetaSRcount) EXCrandSLMtheta = new Vector(thetaSLMcount) randSLMinhtheta90 = new Vector(thetaSRcount) randSLMinhtheta180 = new Vector(thetaSRcount) randSLMinhtheta270 = new Vector(thetaSRcount) randinhindex = new Vector(ninhsyns) tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < nSRexcsyns; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, nSRexcsyns-1) // Generate random integer for k=0,nSRexcsyns-1 repeats = repeats + (tempindex == randSRexcindex.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSRexcindex.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < nSLMexcsyns; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, nSLMexcsyns-1) // Generate random integer for k=0,nSLMexcsyns-1 repeats = repeats + (tempindex == randSLMexcindex.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSLMexcindex.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < ninhsyns; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, ninhsyns-1) // Generate random integer for k=0,ninhsyns-1 repeats = repeats + (tempindex == randinhindex.x[k]) // Check if value repeats (i.e. if repeats > 0) } randinhindex.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } // Theta Randomizations tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSRcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSRcount-1) // Generate random integer for k=0,thetaSRcount-1 repeats = repeats + (tempindex == EXCrandSRtheta.x[k]) // Check if value repeats (i.e. if repeats > 0) } EXCrandSRtheta.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSRcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSRcount-1) // Generate random integer for k=0,thetaSRcount-1 repeats = repeats + (tempindex == randSRinhtheta90.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSRinhtheta90.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSRcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSRcount-1) // Generate random integer for k=0,thetaSRcount-1 repeats = repeats + (tempindex == randSRinhtheta180.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSRinhtheta180.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSRcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSRcount-1) // Generate random integer for k=0,thetaSRcount-1 repeats = repeats + (tempindex == randSRinhtheta270.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSRinhtheta270.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSLMcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == EXCrandSLMtheta.x[k]) // Check if value repeats (i.e. if repeats > 0) } EXCrandSLMtheta.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSLMcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == randSLMinhtheta90.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSLMinhtheta90.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSLMcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == randSLMinhtheta180.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSLMinhtheta180.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } tempindex = 0 repeats = 1 // Initialize at 1 so it does skip the while loop for (i = 0; i < thetaSLMcount; i = i + 1){ while (repeats > 0){ repeats = 0 // Reset the count of repeats to 0 for next iteration tempindex = r.discunif(-1, thetaSLMcount-1) // Generate random integer for k=0,thetaSLMcount-1 repeats = repeats + (tempindex == randSLMinhtheta270.x[k]) // Check if value repeats (i.e. if repeats > 0) } randSLMinhtheta270.x[i] = tempindex // Assign value if not repeated repeats = 1 // Re-initialize to 1 so it doesn't skip while loop } } access soma // Create new synapses to generate theta-timed spiking objectvar sw, apc, apctimes, rSRexc, rSRexcvec, rSLMexc, rSLMexcvec, rinh, rinhvec, frecSRExcPreSpikeTrains, frecSLMExcPreSpikeTrains, frecInhPreSpikeTrains, rSRexcMat, rSLMexcMat, rinhMat access soma distance() // Record presynaptic theta spike times objectvar ThetaSRexcprespiketrains[500], ThetaSLMexcprespiketrains[500], thetaMat, frecThetaSpikeTrains objectvar ThetaSRInh90prespiketrains[500], ThetaSRInh180prespiketrains[500], ThetaSRInh270prespiketrains[500], ThetaSLMInh90prespiketrains[500], ThetaSLMInh180prespiketrains[500], ThetaSLMInh270prespiketrains[500] objref spTheta, spHC spTheta = new Shape() spTheta.show(0) spHC = new Shape() spHC.show(0) thetamultiplier = 0 proc f() { spHC = new Shape() spHC.show(0) rSRexc = new Random($6*10+$7+28293) // Ensures different random seeds on each iteration rSRexc.uniform(0,tstop) rSLMexc = new Random($6*10+$7+51234) rSLMexc.uniform(0,tstop) rinh = new Random($6*10+$7+81221) rinh.uniform(0,tstop) inhsyncount = $1 excsyncount = $2 inhsynspikes = $3 excSRsynspikes = $4 excSLMsynspikes = $4 SaveExample = $5 nexccommon = 9 ninhcommon = 4 AddRhythm = $8 inhthetacount = $9 excthetacount = $10 EXCSLM = $11 EXCSR = $12 Inh90SR = $13 Inh180SR = $14 Inh270SR = $15 Inh90SLM = $16 Inh180SLM = $17 Inh270SLM = $18 // Re-initialize all inhibitory synapses such that they are silent when starting a new iteration rinhvec = new Vector(0) for i=0,ninhsyns-1 inhnss[randinhindex.x[i]].play(rinhvec) // Re-initialize all excitatory synapses such that they are silent when starting a new iteration rSRexcvec = new Vector(0) for i=0,nSRexcsyns-1 SRexcnss[randSRexcindex.x[i]].play(rSRexcvec) rSLMexcvec = new Vector(0) for i=0,nSLMexcsyns-1 SLMexcnss[randSLMexcindex.x[i]].play(rSLMexcvec) // Assign excitatory spike times if (excSRsynspikes > 0 && excSLMsynspikes > 0) { rSRexcMat = new Matrix(int((excsyncount)/2),excSRsynspikes) rSLMexcMat = new Matrix(int((excsyncount)/2),excSLMsynspikes) for (i=0; i < int((excsyncount)/2); i = i + 1){ // On each iteration add 1 SR and 1 SLM excitatory synapse // Sample new spike times for common inputs rSRexcvec = new Vector(excSRsynspikes) rSRexcvec.setrand(rSRexc) rSRexcvec.sort() rSLMexcvec = new Vector(excSLMsynspikes) rSLMexcvec.setrand(rSLMexc) rSLMexcvec.sort() xcom = 1 // Common input loop where synapses are given the same input until the maximum number of common inputs is passed while (xcom <= nexccommon && i < int((excsyncount)/2) && i < nSLMexcsyns && i < nSRexcsyns) { // Add SR excitatory inputs SRexcnss[randSRexcindex.x[i]].play(rSRexcvec) spHC.point_mark(SRexcsynapses[randSRexcindex.x[i]],3,"O",2) for k=0,excSRsynspikes-1 rSRexcMat.x[i][k] = rSRexcvec.x[k] // Add SLM excitatory inputs and if out of SLM synapses add SR inputs intead SLMexcnss[randSLMexcindex.x[i]].play(rSLMexcvec) spHC.point_mark(SLMexcsynapses[randSLMexcindex.x[i]],4,"O",2) for k=0,excSLMsynspikes-1 rSLMexcMat.x[i][k] = rSLMexcvec.x[k] i = i + 1 // update indexing xcom = xcom + 1 } i = i - 1 // i.e. so that i does not get updated twice resulting in skipped synapses } } // Assign inhibitory spike times if (inhsynspikes > 0){ rinhMat = new Matrix(inhsyncount,inhsynspikes) for (i=0; i < inhsyncount; i = i + 1){ rinhvec = new Vector(inhsynspikes) rinhvec.setrand(rinh) rinhvec.sort() xcom = 1 while (xcom <= ninhcommon && i < inhsyncount) { inhnss[randinhindex.x[i]].play(rinhvec) spHC.point_mark(inhsynapses[randinhindex.x[i]],2,"O",1.5) // Build Spike Time Matrix for k=0,inhsynspikes-1 rinhMat.x[i][k] = rinhvec.x[k] i = i + 1 xcom = xcom + 1 } i = i - 1 // i.e. so that i does not get updated twice resulting in skipped synapses } } // Re-Initialize All Theta Inputs for (p = 0; p < thetaSLMcount; p = p + 1){ ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].interval = tstop ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].number = 0 ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].start = tstop ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].noise = 0 InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].interval = tstop InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].number = 0 InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].start = tstop InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].noise = 0 InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].interval = tstop InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].number = 0 InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].start = tstop InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].noise = 0 InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].interval = tstop InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].number = 0 InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].start = tstop InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].noise = 0 } for (p = 0; p < thetaSRcount; p = p + 1){ ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].interval = tstop ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].number = 0 ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].start = tstop ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].noise = 0 InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].interval = tstop InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].number = 0 InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].start = tstop InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].noise = 0 InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].interval = tstop InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].number = 0 InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].start = tstop InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].noise = 0 InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].interval = tstop InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].number = 0 InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].start = tstop InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].noise = 0 } // Feed theta inputs to desired areas for (p = 0; p < excthetacount*AddRhythm; p = p + 1){ if (EXCSLM == 1){ ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].start = 0 ExcThetaSLMsynsNSS[EXCrandSLMtheta.x[p]].noise = 0 spTheta.point_mark(ExcThetaSLMsyns[EXCrandSLMtheta.x[p]],4,"O",2) ThetaSLMexcprespiketrains[EXCrandSLMtheta.x[p]] = new Vector() ExcThetaSLMsynsNCS[EXCrandSLMtheta.x[p]].record(ThetaSLMexcprespiketrains[EXCrandSLMtheta.x[p]]) } if (EXCSR == 1){ ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].start = 31.25 ExcThetaSRsynsNSS[EXCrandSRtheta.x[p]].noise = 0 spTheta.point_mark(ExcThetaSRsyns[EXCrandSRtheta.x[p]],3,"O",2) ThetaSRexcprespiketrains[EXCrandSRtheta.x[p]] = new Vector() ExcThetaSRsynsNCS[EXCrandSRtheta.x[p]].record(ThetaSRexcprespiketrains[EXCrandSRtheta.x[p]]) } } for (p = 0; p < inhthetacount*AddRhythm; p = p + 1){ if (Inh90SR == 1){ InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].start = 31.25 InhThetaSRsyns90NSS[randSRinhtheta90.x[p]].noise = 0 spTheta.point_mark(InhThetaSRsyns90[randSRinhtheta90.x[p]],2,"O",1.5) ThetaSRInh90prespiketrains[randSRinhtheta90.x[p]] = new Vector() InhThetaSRsyns90NCS[randSRinhtheta90.x[p]].record(ThetaSRInh90prespiketrains[randSRinhtheta90.x[p]]) } if (Inh180SR == 1){ InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].start = 62.5 InhThetaSRsyns180NSS[randSRinhtheta180.x[p]].noise = 0 spTheta.point_mark(InhThetaSRsyns180[randSRinhtheta180.x[p]],5,"O",1.5) ThetaSRInh180prespiketrains[randSRinhtheta180.x[p]] = new Vector() InhThetaSRsyns180NCS[randSRinhtheta180.x[p]].record(ThetaSRInh180prespiketrains[randSRinhtheta180.x[p]]) } if (Inh270SR == 1){ InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].start = 93.75 InhThetaSRsyns270NSS[randSRinhtheta270.x[p]].noise = 0 spTheta.point_mark(InhThetaSRsyns270[randSRinhtheta270.x[p]],6,"O",1.5) ThetaSRInh270prespiketrains[randSRinhtheta270.x[p]] = new Vector() InhThetaSRsyns270NCS[randSRinhtheta270.x[p]].record(ThetaSRInh270prespiketrains[randSRinhtheta270.x[p]]) } if (Inh90SLM == 1){ InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].start = 31.25 InhThetaSLMsyns90NSS[randSLMinhtheta90.x[p]].noise = 0 spTheta.point_mark(InhThetaSLMsyns90[randSLMinhtheta90.x[p]],2,"O",1.5) ThetaSLMInh90prespiketrains[randSLMinhtheta90.x[p]] = new Vector() InhThetaSLMsyns90NCS[randSLMinhtheta90.x[p]].record(ThetaSLMInh90prespiketrains[randSLMinhtheta90.x[p]]) } if (Inh180SLM == 1){ InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].start = 62.5 InhThetaSLMsyns180NSS[randSLMinhtheta180.x[p]].noise = 0 spTheta.point_mark(InhThetaSLMsyns180[randSLMinhtheta180.x[p]],5,"O",1.5) ThetaSLMInh180prespiketrains[randSLMinhtheta180.x[p]] = new Vector() InhThetaSLMsyns180NCS[randSLMinhtheta180.x[p]].record(ThetaSLMInh180prespiketrains[randSLMinhtheta180.x[p]]) } if (Inh270SLM == 1){ InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].interval = (1/8)*1000 // i.e. 8Hz converted to a time interval in ms InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].number = 8*tstop/1000 // i.e. if 8 Hz, there should be 80 presynaptic spikes in 10 seconds (per synapse) InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].start = 93.75 InhThetaSLMsyns270NSS[randSLMinhtheta270.x[p]].noise = 0 spTheta.point_mark(InhThetaSLMsyns270[randSLMinhtheta270.x[p]],6,"O",1.5) ThetaSLMInh270prespiketrains[randSLMinhtheta270.x[p]] = new Vector() InhThetaSLMsyns270NCS[randSLMinhtheta270.x[p]].record(ThetaSLMInh270prespiketrains[randSLMinhtheta270.x[p]]) } } if (SaveExample==1){ if (AddRhythm == 1){ // Change later when adding more synapses // Save Excitatory Raster Matrices sprint(filename4,"SRExcPreSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8) frecSRExcPreSpikeTrains = new File(filename4) frecSRExcPreSpikeTrains.wopen(filename4) if (excSRsynspikes > 0) { rSRexcMat.fprint(frecSRExcPreSpikeTrains,"%f\t") // Spike times sampled from random distribution } frecSRExcPreSpikeTrains.close() sprint(filename7,"SLMExcPreSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8) frecSLMExcPreSpikeTrains = new File(filename7) frecSLMExcPreSpikeTrains.wopen(filename7) if (excSLMsynspikes > 0) { rSLMexcMat.fprint(frecSLMExcPreSpikeTrains,"%f\t") // Spike times sampled from random distribution } frecSLMExcPreSpikeTrains.close() // Save Inhibitory Raster Matrix sprint(filename5,"InhPreSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8) frecInhPreSpikeTrains = new File(filename5) frecInhPreSpikeTrains.wopen(filename5) if (inhsynspikes > 0){ rinhMat.fprint(frecInhPreSpikeTrains,"%f\t") // Spike times sampled from random distribution } frecInhPreSpikeTrains.close() sprint(filename3,"HCSynLocationsShapePlot_1_HCNumber.ps") spHC.printfile(filename3) spHC.point_mark_remove() sprint(filename6,"ThetaSynLocationsShapePlot_X%g_ThetaMultiplier.ps",thetamultiplier) spTheta.printfile(filename6) spTheta.point_mark_remove() thetamultiplier = thetamultiplier + 1 } apc = new APCount(0.5) apctimes = new Vector() apc.thresh = -20 apc.record(apctimes) // Run Simulation and Record Vm Vector recV = new Vector() recV.record(&soma.v(0.5)) run() sprint(filename1,"model_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_X%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8) frecV = new File(filename1) frecV.wopen(filename1) recV.vwrite(frecV) // Use printf instead of vwrite if you want a text file instead of a binary file frecV.close() // if (AddRhythm == 1){ // numindices = excthetacount*(EXCSLM+EXCSR) + inhthetacount*(OLMSLM+NGFSLM+IS2SLM+BISSR+IS1SR) // // Build Theta Spike Matrix // numSpikes = 8*tstop/1000 // thetaMat = new Matrix(numindices,numSpikes) // for (x = 0; x < excthetacount*EXCSLM; x = x + 1){ // for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMexcprespiketrains[EXCrandSLMtheta.x[x]].x[y] // } // for (x = excthetacount*EXCSLM; x < excthetacount*EXCSLM + excthetacount*EXCSR; x = x + 1){ // for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSRexcprespiketrains[EXCrandSRtheta.x[x-(excthetacount*EXCSLM)]].x[y] // } // for (x = excthetacount*EXCSLM + excthetacount*EXCSR; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM; x = x + 1){ // for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMOLMprespiketrains[OLMrandSLMtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR)]].x[y] // } // for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM; x = x + 1){ // for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMNGFprespiketrains[NGFrandSLMtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM)]].x[y] // } // for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM; x = x + 1){ // for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSLMIS2prespiketrains[IS2randSLMtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM)]].x[y] // } // for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR; x = x + 1){ // for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSRBISprespiketrains[BISrandSRtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM)]].x[y] // } // for (x = excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR; x < excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR + inhthetacount*IS1SR; x = x + 1){ // for y = 0,numSpikes-1 thetaMat.x[x][y] = ThetaSRIS1prespiketrains[IS1randSRtheta.x[x-(excthetacount*EXCSLM + excthetacount*EXCSR + inhthetacount*OLMSLM + inhthetacount*NGFSLM + inhthetacount*IS2SLM + inhthetacount*BISSR)]].x[y] // } // //Save Theta Spike Matrix // sprint(filename2,"ThetaSpikeTrains_%g_NumInh_%g_NumExc_%g_InhSpikes_%g_ExcSRSpikes_%g_ExcSLMSpikes_%g_NumExcCommon_%g_NumInhCommon_%g_ThetaMultiplier.dat",inhsyncount,excsyncount,inhsynspikes,excSRsynspikes,excSLMsynspikes,nexccommon,ninhcommon,inhthetacount/8) // frecThetaSpikeTrains = new File(filename2) // frecThetaSpikeTrains.wopen(filename2) // thetaMat.fprint(frecThetaSpikeTrains,"%f\t") // Spike times sampled from random distribution // frecThetaSpikeTrains.close() // } }else{ // Run Simulation and Record Vm Vector recV = new Vector() recV.record(&soma.v(0.5)) run() } }