### Test Script for a file found in the SDprox2 results from initial Parallel Simulations from __future__ import division import numpy import matplotlib from matplotlib import pyplot from mpl_toolkits.mplot3d import Axes3D import scipy from scipy import signal from scipy import stats Case = 'SDprox1_E_COM_I_COM' EXCSLM = 1 EXCSR = 1 Inh90SR = 1 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 numExcThetaSyns = 27 # i.e. 3 connections so 9 synapses per connection numInhThetaSyns = 8 # i.e. 2 connections so 4 synapses per connection SaveExample = 1 randseed1 = 10 # if using fixed random seeds randseed2 = 15 # HC Treshold Measurement Values tstop = 10 # seconds font_size = 13 Examples = numpy.load('NPYfiles/' + Case + '_ExampleHCModelParams.npy') ExampleStrings = numpy.load('NPYfiles/' + Case + '_ExampleHCModelStrings.npy') thetaSynMultiplier = numpy.array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1]) prethetanoise = numpy.array([0.01]) tstop = h.tstop/1000 dt = h.dt for x2 in range(0,1): if Examples[0][x2] == 0: print(ExampleStrings[x2].decode("utf-8") + ' is empty') continue for n in prethetanoise: for y in range(0,10): print('Simulating... ' + str(ExampleStrings[x2].decode("utf-8")) + ' #' + str(y+1)) if y == 1: EXCSLM = 1 EXCSR = 1 Inh90SR = 1 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 2: EXCSLM = 1 EXCSR = 0 Inh90SR = 1 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 3: EXCSLM = 0 EXCSR = 1 Inh90SR = 1 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 4: EXCSLM = 1 EXCSR = 1 Inh90SR = 0 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 5: EXCSLM = 1 EXCSR = 1 Inh90SR = 1 Inh180SR = 0 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 6: EXCSLM = 1 EXCSR = 1 Inh90SR = 1 Inh180SR = 1 Inh270SR = 0 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 7: EXCSLM = 1 EXCSR = 1 Inh90SR = 1 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 0 Inh180SLM = 1 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 8: EXCSLM = 1 EXCSR = 1 Inh90SR = 1 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 0 Inh270SLM = 1 EXC = 1 INH = 1 elif y == 9: EXCSLM = 1 EXCSR = 1 Inh90SR = 1 Inh180SR = 1 Inh270SR = 1 Inh90SLM = 1 Inh180SLM = 1 Inh270SLM = 0 EXC = 1 INH = 1 ExampleString = ExampleStrings[x2].decode("utf-8") HCNumber = x2 # Run Simulation of Example h.randomize_syns(5,2) # i.e. same random seeds when comparing runs h.f(Examples[0][x2],Examples[1][x2],Examples[2][x2],Examples[3][x2],SaveExample,randseed1,randseed2,1,INH*numInhThetaSyns*thetaSynMultiplier[y],EXC*numExcThetaSyns*thetaSynMultiplier[y],EXCSLM,EXCSR,Inh90SR,Inh180SR,Inh270SR,Inh90SLM,Inh180SLM,Inh270SLM,n) # i.e. same random seeds when comparing runs HC_Trace = numpy.fromfile("%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % ('model_',str(Examples[0][x2]),'_NumInh_',str(Examples[1][x2]),'_NumExc_',str(Examples[2][x2]),'_InhSpikes_',str(Examples[3][x2]),'_ExcSRSpikes_',str(Examples[3][x2]),'_ExcSLMSpikes_',str(9),'_NumExcCommon_',str(4),'_NumInhCommon_X',str(thetaSynMultiplier[y]),'_ThetaMultiplier_',str('%0.2f' %h.prethetanoise),'_prethetanoise.dat'),dtype=float) voltvec = HC_Trace[1:len(HC_Trace)] if y == 0: HC_Trace_Baseline = HC_Trace[10000:100001] HC_SpikeTimes_Baseline = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_Baseline[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_Baseline = HC_SpikeTimes_Baseline[10000:100001] HC_SpikeTimes_Baseline2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 1: HC_Trace_Rhythm = HC_Trace[10000:100001] HC_SpikeTimes_Rhythm = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_Rhythm[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_Rhythm = HC_SpikeTimes_Rhythm[10000:100001] HC_SpikeTimes_Rhythm2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 2: HC_Trace_CA3Removed = HC_Trace[10000:100001] HC_SpikeTimes_CA3Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_CA3Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_CA3Removed = HC_SpikeTimes_CA3Removed[10000:100001] HC_SpikeTimes_CA3Removed2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 3: HC_Trace_EC3Removed = HC_Trace[10000:100001] HC_SpikeTimes_EC3Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_EC3Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_EC3Removed = HC_SpikeTimes_EC3Removed[10000:100001] HC_SpikeTimes_EC3Removed2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 4: HC_Trace_SR90Removed = HC_Trace[10000:100001] HC_SpikeTimes_SR90Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_SR90Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_SR90Removed = HC_SpikeTimes_SR90Removed[10000:100001] HC_SpikeTimes_SR90Removed2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 5: HC_Trace_SR180Removed = HC_Trace[10000:100001] HC_SpikeTimes_SR180Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_SR180Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_SR180Removed = HC_SpikeTimes_SR180Removed[10000:100001] HC_SpikeTimes_SR180Removed2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 6: HC_Trace_SR270Removed = HC_Trace[10000:100001] HC_SpikeTimes_SR270Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_SR270Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_SR270Removed = HC_SpikeTimes_SR270Removed[10000:100001] HC_SpikeTimes_SR270Removed2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 7: HC_Trace_SLM90Removed = HC_Trace[10000:100001] HC_SpikeTimes_SLM90Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_SLM90Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_SLM90Removed = HC_SpikeTimes_SLM90Removed[10000:100001] HC_SpikeTimes_SLM90Removed2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 8: HC_Trace_SLM180Removed = HC_Trace[10000:100001] HC_SpikeTimes_SLM180Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_SLM180Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_SLM180Removed = HC_SpikeTimes_SLM180Removed[10000:100001] HC_SpikeTimes_SLM180Removed2 = numpy.array(h.apctimes,dtype=numpy.float) elif y == 9: HC_Trace_SLM270Removed = HC_Trace[10000:100001] HC_SpikeTimes_SLM270Removed = numpy.zeros((len(HC_Trace),), dtype=numpy.float) for i in range(0,len(h.apctimes)): HC_SpikeTimes_SLM270Removed[int(h.apctimes.x[i]/dt)] = h.apctimes.x[i] HC_SpikeTimes_SLM270Removed = HC_SpikeTimes_SLM270Removed[10000:100001] HC_SpikeTimes_SLM270Removed2 = numpy.array(h.apctimes,dtype=numpy.float) timevec = numpy.arange(0,10000.1,0.1) if y == 0: f, axarr = matplotlib.pyplot.subplots(10, sharex=True) axarr[0].plot(timevec,voltvec,'lightblue',label='Base') axarr[0].set_ylim(-85,30) axarr[0].set_xlim(8000,10000) axarr[0].spines['right'].set_visible(False) axarr[0].spines['top'].set_visible(False) axarr[0].spines['bottom'].set_visible(False) for tic in axarr[0].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[0].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 1: axarr[1].plot(timevec,voltvec,'tomato',label='X1 Theta') axarr[1].set_ylim(-85,30) axarr[1].set_xlim(8000,10000) axarr[1].spines['right'].set_visible(False) axarr[1].spines['top'].set_visible(False) axarr[1].spines['bottom'].set_visible(False) for tic in axarr[1].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[1].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 2: axarr[2].plot(timevec,voltvec,'g',label='-CA3') axarr[2].set_ylim(-85,30) axarr[2].set_xlim(8000,10000) axarr[2].spines['right'].set_visible(False) axarr[2].spines['top'].set_visible(False) axarr[2].spines['bottom'].set_visible(False) for tic in axarr[2].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[2].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 3: axarr[3].plot(timevec,voltvec,'c',label='-EC3') axarr[3].set_ylim(-85,30) axarr[3].set_xlim(8000,10000) axarr[3].set_ylabel('Voltage (mV) ',fontsize=font_size-2) axarr[3].spines['right'].set_visible(False) axarr[3].spines['top'].set_visible(False) axarr[3].spines['bottom'].set_visible(False) for tic in axarr[3].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[3].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 4: axarr[4].plot(timevec,voltvec,'m',label='-SR90') axarr[4].set_ylim(-85,30) axarr[4].set_xlim(8000,10000) axarr[4].spines['right'].set_visible(False) axarr[4].spines['top'].set_visible(False) axarr[4].spines['bottom'].set_visible(False) for tic in axarr[4].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[4].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 5: axarr[5].plot(timevec,voltvec,'y',label='-SR180') axarr[5].set_ylim(-85,30) axarr[5].set_xlim(8000,10000) axarr[5].spines['right'].set_visible(False) axarr[5].spines['top'].set_visible(False) axarr[5].spines['bottom'].set_visible(False) for tic in axarr[5].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[5].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 6: axarr[6].plot(timevec,voltvec,'b',label='-SR270') axarr[6].set_ylim(-85,30) axarr[6].set_xlim(8000,10000) axarr[6].spines['right'].set_visible(False) axarr[6].spines['top'].set_visible(False) axarr[6].spines['bottom'].set_visible(False) for tic in axarr[6].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[6].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 7: axarr[7].plot(timevec,voltvec,'k',label='-SLM90') axarr[7].set_ylim(-85,30) axarr[7].set_xlim(8000,10000) axarr[7].spines['right'].set_visible(False) axarr[7].spines['top'].set_visible(False) axarr[7].spines['bottom'].set_visible(False) for tic in axarr[7].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[7].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 8: axarr[8].plot(timevec,voltvec,'orange',label='-SLM180') axarr[8].set_ylim(-85,30) axarr[8].set_xlim(8000,10000) axarr[8].spines['right'].set_visible(False) axarr[8].spines['top'].set_visible(False) axarr[8].spines['bottom'].set_visible(False) for tic in axarr[8].xaxis.get_major_ticks(): tic.tick1line.set_visible = tic.tick2line.set_visible = False leg = axarr[8].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) if y == 9: axarr[9].plot(timevec,voltvec,'r',label='-SLM270') axarr[9].set_ylim(-85,30) axarr[9].set_xlim(8000,10000) axarr[9].set_xlabel('Time (ms)',fontsize=font_size-2) axarr[9].spines['right'].set_visible(False) axarr[9].spines['top'].set_visible(False) leg = axarr[9].legend(loc="upper right", handlelength=0, handletextpad=0, fancybox=True) leg.get_frame().set_alpha(1) for item in leg.legendHandles: item.set_visible(False) pyplot.savefig('PLOTfiles/' + Case + '_Trace_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_Trace_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() f, axarr = matplotlib.pyplot.subplots(2, sharex=False) f1, Pxx_den1 = signal.welch(HC_SpikeTimes_Baseline, 1/(dt/1000), nperseg=25000) f2, Pxx_den2 = signal.welch(HC_SpikeTimes_Rhythm, 1/(dt/1000), nperseg=25000) f3, Pxx_den3 = signal.welch(HC_SpikeTimes_CA3Removed, 1/(dt/1000), nperseg=25000) f4, Pxx_den4 = signal.welch(HC_SpikeTimes_EC3Removed, 1/(dt/1000), nperseg=25000) f5, Pxx_den5 = signal.welch(HC_SpikeTimes_SR90Removed, 1/(dt/1000), nperseg=25000) f6, Pxx_den6 = signal.welch(HC_SpikeTimes_SR180Removed, 1/(dt/1000), nperseg=25000) f7, Pxx_den7 = signal.welch(HC_SpikeTimes_SR270Removed, 1/(dt/1000), nperseg=25000) f8, Pxx_den8 = signal.welch(HC_SpikeTimes_SLM90Removed, 1/(dt/1000), nperseg=25000) f9, Pxx_den9 = signal.welch(HC_SpikeTimes_SLM180Removed, 1/(dt/1000), nperseg=25000) f10, Pxx_den10 = signal.welch(HC_SpikeTimes_SLM270Removed, 1/(dt/1000), nperseg=25000) numpy.save('NPYfiles/' + Case + '_SpikeTimesBaseline_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_Baseline2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_Rhythm2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_CA3Removed2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_EC3Removed2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_SR90Removed2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_SR180Removed2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_SR270Removed2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_SLM90Removed2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_SLM180Removed2) numpy.save('NPYfiles/' + Case + '_SpikeTimesRhythm_' + str(HCNumber) + '_HCNumber_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',HC_SpikeTimes_SLM270Removed2) axarr[0].loglog(f1, Pxx_den1,color='lightblue') axarr[0].loglog(f2, Pxx_den2,color='tomato') axarr[0].loglog(f3, Pxx_den3,'g') axarr[0].loglog(f4, Pxx_den4,'c') axarr[0].loglog(f5, Pxx_den5,'m') axarr[0].loglog(f6, Pxx_den6,'y') axarr[0].loglog(f7, Pxx_den7,'b') axarr[0].loglog(f8, Pxx_den8,'k') axarr[0].loglog(f9, Pxx_den9,color='orange') axarr[0].loglog(f10, Pxx_den10,'r') axarr[0].hlines(numpy.amax(Pxx_den2)+500,5,12,'k',linestyles='solid') axarr[0].text(5.05,numpy.amax(Pxx_den2)+1000,'Theta (5-12Hz)') axarr[0].axvline(numpy.array([5]),ymin=0,ymax=0.95,color='k',linestyle='solid') axarr[0].axvline(numpy.array([12]),ymin=0,ymax=0.95,color='k',linestyle='solid') axarr[0].axvline(numpy.array([8]),ymin=0,ymax=0.95,color='k',linestyle='dashed') axarr[0].set_xlim(0,100) axarr[0].set_xlabel('frequency (Hz)') axarr[0].set_ylabel(r'$PSD (Spikes^2 / Hz)$') axarr[0].spines['right'].set_visible(False) axarr[0].spines['top'].set_visible(False) ind = numpy.arange(10) width = 0.4 Area1 = numpy.trapz(Pxx_den1[(f1>5) & (f1<12)],x=f1[(f1>5) & (f1<12)]) Area2 = numpy.trapz(Pxx_den2[(f2>5) & (f2<12)],x=f2[(f2>5) & (f2<12)]) Area3 = numpy.trapz(Pxx_den3[(f3>5) & (f3<12)],x=f3[(f3>5) & (f3<12)]) Area4 = numpy.trapz(Pxx_den4[(f4>5) & (f4<12)],x=f4[(f4>5) & (f4<12)]) Area5 = numpy.trapz(Pxx_den5[(f5>5) & (f5<12)],x=f5[(f5>5) & (f5<12)]) Area6 = numpy.trapz(Pxx_den6[(f6>5) & (f6<12)],x=f6[(f6>5) & (f6<12)]) Area7 = numpy.trapz(Pxx_den7[(f7>5) & (f7<12)],x=f7[(f7>5) & (f7<12)]) Area8 = numpy.trapz(Pxx_den8[(f8>5) & (f8<12)],x=f8[(f8>5) & (f8<12)]) Area9 = numpy.trapz(Pxx_den9[(f9>5) & (f9<12)],x=f9[(f9>5) & (f9<12)]) Area10 = numpy.trapz(Pxx_den8[(f10>5) & (f10<12)],x=f10[(f10>5) & (f10<12)]) e8Hz1 = Pxx_den1[f1==8] e8Hz2 = Pxx_den2[f2==8] e8Hz3 = Pxx_den3[f3==8] e8Hz4 = Pxx_den4[f4==8] e8Hz5 = Pxx_den5[f5==8] e8Hz6 = Pxx_den6[f6==8] e8Hz7 = Pxx_den7[f7==8] e8Hz8 = Pxx_den8[f8==8] e8Hz9 = Pxx_den9[f9==8] e8Hz10 = Pxx_den10[f10==8] axarr[1].bar(ind+width, [e8Hz1[0], e8Hz2[0], e8Hz3[0], e8Hz4[0], e8Hz5[0], e8Hz6[0], e8Hz7[0], e8Hz8[0], e8Hz9[0], e8Hz10[0]], width, color='k') axarr[1].set_xticks(ind+width) axarr[1].set_xticklabels(('Base','X1 Theta','-CA3','-EC3','-SR90','-SR180','-SR270','-SLM90','-SLM180','-SLM270'),fontsize=font_size-3, fontweight='bold', rotation=45) axarr[1].set_ylabel('PSD Magnitude At 8Hz') axarr[1].set_xlim(0,10+width) axarr[1].spines['right'].set_visible(False) axarr[1].spines['top'].set_visible(False) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PSD_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PSD_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() # Instantaneous Frequency Analyses (Note this is converting the ISIs into seconds and then instantaneous frequencies) IF_Baseline = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_Baseline2)]) IF_ThetaX1 = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_Rhythm2)]) IF_CA3Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_CA3Removed2)]) IF_EC3Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_EC3Removed2)]) IF_SR90Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_SR90Removed2)]) IF_SR180Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_SR180Removed2)]) IF_SR270Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_SR270Removed2)]) IF_SLM90Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_SLM90Removed2)]) IF_SLM180Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_SLM180Removed2)]) IF_SLM270Removed = numpy.concatenate([numpy.array([0],dtype=numpy.float),1000/numpy.diff(HC_SpikeTimes_SLM270Removed2)]) range_if = (0,100) heights1,bins1 = numpy.histogram(IF_Baseline,bins=100,range=range_if) heights2,bins2 = numpy.histogram(IF_ThetaX1,bins=100,range=range_if) heights3,bins3 = numpy.histogram(IF_CA3Removed,bins=100,range=range_if) heights4,bins4 = numpy.histogram(IF_EC3Removed,bins=100,range=range_if) heights5,bins5 = numpy.histogram(IF_SR90Removed,bins=100,range=range_if) heights6,bins6 = numpy.histogram(IF_SR180Removed,bins=100,range=range_if) heights7,bins7 = numpy.histogram(IF_SR270Removed,bins=100,range=range_if) heights8,bins8 = numpy.histogram(IF_SLM90Removed,bins=100,range=range_if) heights9,bins9 = numpy.histogram(IF_SLM180Removed,bins=100,range=range_if) heights10,bins10 = numpy.histogram(IF_SLM270Removed,bins=100,range=range_if) # Normalize heights1 = heights1/float(sum(heights1)) heights2 = heights2/float(sum(heights2)) heights3 = heights3/float(sum(heights3)) heights4 = heights4/float(sum(heights4)) heights5 = heights5/float(sum(heights5)) heights6 = heights6/float(sum(heights6)) heights7 = heights7/float(sum(heights7)) heights8 = heights8/float(sum(heights8)) heights9 = heights9/float(sum(heights9)) heights10 = heights10/float(sum(heights10)) bin1=bins1[:-1]+numpy.diff(bins1)/2. bin2=bins2[:-1]+numpy.diff(bins2)/2. bin3=bins3[:-1]+numpy.diff(bins3)/2. bin4=bins4[:-1]+numpy.diff(bins4)/2. bin5=bins5[:-1]+numpy.diff(bins5)/2. bin6=bins6[:-1]+numpy.diff(bins6)/2. bin7=bins7[:-1]+numpy.diff(bins7)/2. bin8=bins8[:-1]+numpy.diff(bins8)/2. bin9=bins9[:-1]+numpy.diff(bins9)/2. bin10=bins10[:-1]+numpy.diff(bins10)/2. binMids1 = bin1[~numpy.isnan(bin1)] binMids2 = bin2[~numpy.isnan(bin2)] binMids3 = bin3[~numpy.isnan(bin3)] binMids4 = bin4[~numpy.isnan(bin4)] binMids5 = bin5[~numpy.isnan(bin5)] binMids6 = bin6[~numpy.isnan(bin6)] binMids7 = bin7[~numpy.isnan(bin7)] binMids8 = bin8[~numpy.isnan(bin8)] binMids9 = bin9[~numpy.isnan(bin9)] binMids10 = bin10[~numpy.isnan(bin10)] heights1 = heights1[~numpy.isnan(bin1)] heights2 = heights2[~numpy.isnan(bin2)] heights3 = heights3[~numpy.isnan(bin3)] heights4 = heights4[~numpy.isnan(bin4)] heights5 = heights5[~numpy.isnan(bin5)] heights6 = heights6[~numpy.isnan(bin6)] heights7 = heights7[~numpy.isnan(bin7)] heights8 = heights8[~numpy.isnan(bin8)] heights9 = heights9[~numpy.isnan(bin9)] heights10 = heights10[~numpy.isnan(bin10)] f, axarr = matplotlib.pyplot.subplots(2, sharex=False) axarr[0].semilogx(binMids1,heights1,color='lightblue') axarr[0].semilogx(binMids2,heights2,color='tomato') axarr[0].semilogx(binMids3,heights3,'g') axarr[0].semilogx(binMids4,heights4,'c') axarr[0].semilogx(binMids5,heights5,'m') axarr[0].semilogx(binMids6,heights6,'y') axarr[0].semilogx(binMids7,heights7,'b') axarr[0].semilogx(binMids8,heights8,'k') axarr[0].semilogx(binMids9,heights9,color='orange') axarr[0].semilogx(binMids10,heights10,'r') axarr[0].vlines(numpy.array([4,12]),0,numpy.amax(heights2)+0.01,'k',linestyles='solid') axarr[0].vlines(numpy.array([8]),0,numpy.amax(heights2)+0.01,'k',linestyles='dashed') axarr[0].hlines(numpy.amax(heights2)+0.01,4,12,'k',linestyles='solid') axarr[0].text(4.3,numpy.amax(heights2)+0.02,'Theta (4-12Hz)') axarr[0].set_xlabel('Frequency (Hz)') axarr[0].set_ylabel('Probability') axarr[0].set_xlim(0,130) axarr[0].set_ylim(0,0.19) axarr[0].spines['right'].set_visible(False) axarr[0].spines['top'].set_visible(False) ind = numpy.arange(10) width = 0.4 Area11 = numpy.trapz(heights1[(binMids1>4) & (binMids1<8)],x=binMids1[(binMids1>4) & (binMids1<8)]) Area22 = numpy.trapz(heights2[(binMids2>4) & (binMids2<8)],x=binMids2[(binMids2>4) & (binMids2<8)]) Area33 = numpy.trapz(heights3[(binMids3>4) & (binMids3<8)],x=binMids3[(binMids3>4) & (binMids3<8)]) Area44 = numpy.trapz(heights4[(binMids4>4) & (binMids4<8)],x=binMids4[(binMids4>4) & (binMids4<8)]) Area55 = numpy.trapz(heights5[(binMids5>4) & (binMids5<8)],x=binMids5[(binMids5>4) & (binMids5<8)]) Area66 = numpy.trapz(heights6[(binMids6>4) & (binMids6<8)],x=binMids6[(binMids6>4) & (binMids6<8)]) Area77 = numpy.trapz(heights7[(binMids7>4) & (binMids7<8)],x=binMids7[(binMids7>4) & (binMids7<8)]) Area88 = numpy.trapz(heights8[(binMids8>4) & (binMids8<8)],x=binMids8[(binMids8>4) & (binMids8<8)]) Area99 = numpy.trapz(heights9[(binMids9>4) & (binMids9<8)],x=binMids9[(binMids9>4) & (binMids9<8)]) Area1010 = numpy.trapz(heights10[(binMids10>4) & (binMids10<8)],x=binMids10[(binMids10>4) & (binMids10<8)]) e8Hz11 = numpy.trapz(heights1[(binMids1>8) & (binMids1<12)],x=binMids1[(binMids1>8) & (binMids1<12)]) #IF NOT THIS TRY NUMPY.AMAX BETWEEN 7 AND 9 e8Hz22 = numpy.trapz(heights2[(binMids2>8) & (binMids2<12)],x=binMids2[(binMids2>8) & (binMids2<12)]) e8Hz33 = numpy.trapz(heights3[(binMids3>8) & (binMids3<12)],x=binMids3[(binMids3>8) & (binMids3<12)]) e8Hz44 = numpy.trapz(heights4[(binMids4>8) & (binMids4<12)],x=binMids4[(binMids4>8) & (binMids4<12)]) e8Hz55 = numpy.trapz(heights5[(binMids5>8) & (binMids5<12)],x=binMids5[(binMids5>8) & (binMids5<12)]) e8Hz66 = numpy.trapz(heights6[(binMids6>8) & (binMids6<12)],x=binMids6[(binMids6>8) & (binMids6<12)]) e8Hz77 = numpy.trapz(heights7[(binMids7>8) & (binMids7<12)],x=binMids7[(binMids7>8) & (binMids7<12)]) e8Hz88 = numpy.trapz(heights8[(binMids8>8) & (binMids8<12)],x=binMids8[(binMids8>8) & (binMids8<12)]) e8Hz99 = numpy.trapz(heights9[(binMids9>8) & (binMids9<12)],x=binMids9[(binMids9>8) & (binMids9<12)]) e8Hz1010 = numpy.trapz(heights10[(binMids10>8) & (binMids10<12)],x=binMids10[(binMids10>8) & (binMids10<12)]) axarr[1].bar(ind+width, [e8Hz11, e8Hz22, e8Hz33, e8Hz44, e8Hz55, e8Hz66, e8Hz77, e8Hz88, e8Hz99, e8Hz1010], width, color='k') axarr[1].set_xticks(ind+width) axarr[1].set_xticklabels(('Base','X1 Theta','-CA3','-EC3','-SR90','-SR180','-SR270','-SLM90','-SLM180','-SLM270'),fontsize=font_size-3, fontweight='bold', rotation=45) axarr[1].set_ylabel('Probability At 8-12Hz') axarr[1].set_xlim(0,10+width) axarr[1].spines['right'].set_visible(False) axarr[1].spines['top'].set_visible(False) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_IFDistribution_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_IFDistribution_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() # Polar Distribution Plots STX0 = HC_SpikeTimes_Baseline2/125 STX1 = HC_SpikeTimes_Rhythm2/125 STX2 = HC_SpikeTimes_CA3Removed2/125 STX3 = HC_SpikeTimes_EC3Removed2/125 STX4 = HC_SpikeTimes_SR90Removed2/125 STX5 = HC_SpikeTimes_SR180Removed2/125 STX6 = HC_SpikeTimes_SR270Removed2/125 STX7 = HC_SpikeTimes_SLM90Removed2/125 STX8 = HC_SpikeTimes_SLM180Removed2/125 STX9 = HC_SpikeTimes_SLM270Removed2/125 Rads_Baseline = 2*numpy.pi*(STX0-STX0.astype(int)) Rads_1XRhythm = 2*numpy.pi*(STX1-STX1.astype(int)) Rads_CA3Removed = 2*numpy.pi*(STX2-STX2.astype(int)) Rads_EC3Removed = 2*numpy.pi*(STX3-STX3.astype(int)) Rads_SR90Removed = 2*numpy.pi*(STX4-STX4.astype(int)) Rads_SR180Removed = 2*numpy.pi*(STX5-STX5.astype(int)) Rads_SR270Removed = 2*numpy.pi*(STX6-STX6.astype(int)) Rads_SLM90Removed = 2*numpy.pi*(STX7-STX7.astype(int)) Rads_SLM180Removed = 2*numpy.pi*(STX8-STX8.astype(int)) Rads_SLM270Removed = 2*numpy.pi*(STX9-STX9.astype(int)) bin_size = 25 range_if = (0,100) range_rads = (0,2*numpy.pi) heights11,be11 = numpy.histogram(Rads_Baseline,bins=bin_size,range=range_rads) bins11 = be11[:-1]+numpy.diff(be11)/2. PrefPhase_Baseline = bins11[heights11 == numpy.amax(heights11)] heights22,be22 = numpy.histogram(Rads_1XRhythm,bins=bin_size,range=range_rads) bins22 = be22[:-1]+numpy.diff(be22)/2. PrefPhase_ThetaX1 = bins22[heights22 == numpy.amax(heights22)] heights33,be33 = numpy.histogram(Rads_CA3Removed,bins=bin_size,range=range_rads) bins33 = be33[:-1]+numpy.diff(be33)/2. PrefPhase_CA3Removed = bins33[heights33 == numpy.amax(heights33)] heights44,be44 = numpy.histogram(Rads_EC3Removed,bins=bin_size,range=range_rads) bins44 = be44[:-1]+numpy.diff(be44)/2. PrefPhase_EC3Removed = bins44[heights44 == numpy.amax(heights44)] heights55,be55 = numpy.histogram(Rads_SR90Removed,bins=bin_size,range=range_rads) bins55 = be55[:-1]+numpy.diff(be55)/2. PrefPhase_SR90Removed = bins55[heights55 == numpy.amax(heights55)] heights66,be66 = numpy.histogram(Rads_SR180Removed,bins=bin_size,range=range_rads) bins66 = be66[:-1]+numpy.diff(be66)/2. PrefPhase_SR180Removed = bins66[heights66 == numpy.amax(heights66)] heights77,be77 = numpy.histogram(Rads_SR270Removed,bins=bin_size,range=range_rads) bins77 = be77[:-1]+numpy.diff(be77)/2. PrefPhase_SR270Removed = bins77[heights77 == numpy.amax(heights77)] heights88,be88 = numpy.histogram(Rads_SLM90Removed,bins=bin_size,range=range_rads) bins88 = be88[:-1]+numpy.diff(be88)/2. PrefPhase_SLM90Removed = bins88[heights88 == numpy.amax(heights88)] heights99,be99 = numpy.histogram(Rads_SLM180Removed,bins=bin_size,range=range_rads) bins99 = be99[:-1]+numpy.diff(be99)/2. PrefPhase_SLM180Removed = bins99[heights99 == numpy.amax(heights99)] heights1010,be1010 = numpy.histogram(Rads_SLM270Removed,bins=bin_size,range=range_rads) bins1010 = be1010[:-1]+numpy.diff(be1010)/2. PrefPhase_SLM270Removed = bins88[heights1010 == numpy.amax(heights1010)] Rads_Baseline_Sorted = sorted(Rads_Baseline) Rads_1XRhythm_Sorted = sorted(Rads_1XRhythm) Rads_CA3Removed_Sorted = sorted(Rads_CA3Removed) Rads_EC3Removed_Sorted = sorted(Rads_EC3Removed) Rads_SR90Removed_Sorted = sorted(Rads_SR90Removed) Rads_SR180Removed_Sorted = sorted(Rads_SR180Removed) Rads_SR270Removed_Sorted = sorted(Rads_SR270Removed) Rads_SLM90Removed_Sorted = sorted(Rads_SLM90Removed) Rads_SLM180Removed_Sorted = sorted(Rads_SLM180Removed) Rads_SLM270Removed_Sorted = sorted(Rads_SLM270Removed) IF_Baseline_Sorted = [x for i, x in sorted(zip(Rads_Baseline,IF_Baseline))] IF_ThetaX1_Sorted = [x for i, x in sorted(zip(Rads_1XRhythm,IF_ThetaX1))] IF_CA3Removed_Sorted = [x for i, x in sorted(zip(Rads_CA3Removed,IF_CA3Removed))] IF_EC3Removed_Sorted = [x for i, x in sorted(zip(Rads_EC3Removed,IF_EC3Removed))] IF_SR90Removed_Sorted = [x for i, x in sorted(zip(Rads_SR90Removed,IF_SR90Removed))] IF_SR180Removed_Sorted = [x for i, x in sorted(zip(Rads_SR180Removed,IF_SR180Removed))] IF_SR270Removed_Sorted = [x for i, x in sorted(zip(Rads_SR270Removed,IF_SR270Removed))] IF_SLM90Removed_Sorted = [x for i, x in sorted(zip(Rads_SLM90Removed,IF_SLM90Removed))] IF_SLM180Removed_Sorted = [x for i, x in sorted(zip(Rads_SLM180Removed,IF_SLM180Removed))] IF_SLM270Removed_Sorted = [x for i, x in sorted(zip(Rads_SLM270Removed,IF_SLM270Removed))] Rads_Baseline_MeanBins,be11,bn11 = scipy.stats.binned_statistic(Rads_Baseline_Sorted,Rads_Baseline_Sorted,statistic='mean',bins=bin_size,range=range_rads) _BMeans = Rads_Baseline_MeanBins Rads_Baseline_MeanBins = Rads_Baseline_MeanBins[~numpy.isnan(Rads_Baseline_MeanBins)] Rads_Baseline_MeanBins = numpy.append(Rads_Baseline_MeanBins,Rads_Baseline_MeanBins[0]) Rads_1XRhythm_MeanBins,be21,bn21 = scipy.stats.binned_statistic(Rads_1XRhythm_Sorted,Rads_1XRhythm_Sorted,statistic='mean',bins=bin_size,range=range_rads) _1Means = Rads_1XRhythm_MeanBins Rads_1XRhythm_MeanBins = Rads_1XRhythm_MeanBins[~numpy.isnan(Rads_1XRhythm_MeanBins)] Rads_1XRhythm_MeanBins = numpy.append(Rads_1XRhythm_MeanBins,Rads_1XRhythm_MeanBins[0]) Rads_CA3Removed_MeanBins,be31,bn31 = scipy.stats.binned_statistic(Rads_CA3Removed_Sorted,Rads_CA3Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _2Means = Rads_CA3Removed_MeanBins Rads_CA3Removed_MeanBins = Rads_CA3Removed_MeanBins[~numpy.isnan(Rads_CA3Removed_MeanBins)] Rads_CA3Removed_MeanBins = numpy.append(Rads_CA3Removed_MeanBins,Rads_CA3Removed_MeanBins[0]) Rads_EC3Removed_MeanBins,be41,bn41 = scipy.stats.binned_statistic(Rads_EC3Removed_Sorted,Rads_EC3Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _3Means = Rads_EC3Removed_MeanBins Rads_EC3Removed_MeanBins = Rads_EC3Removed_MeanBins[~numpy.isnan(Rads_EC3Removed_MeanBins)] Rads_EC3Removed_MeanBins = numpy.append(Rads_EC3Removed_MeanBins,Rads_EC3Removed_MeanBins[0]) Rads_SR90Removed_MeanBins,be51,bn51 = scipy.stats.binned_statistic(Rads_SR90Removed_Sorted,Rads_SR90Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _4Means = Rads_SR90Removed_MeanBins Rads_SR90Removed_MeanBins = Rads_SR90Removed_MeanBins[~numpy.isnan(Rads_SR90Removed_MeanBins)] Rads_SR90Removed_MeanBins = numpy.append(Rads_SR90Removed_MeanBins,Rads_SR90Removed_MeanBins[0]) Rads_SR180Removed_MeanBins,be61,bn61 = scipy.stats.binned_statistic(Rads_SR180Removed_Sorted,Rads_SR180Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _5Means = Rads_SR180Removed_MeanBins Rads_SR180Removed_MeanBins = Rads_SR180Removed_MeanBins[~numpy.isnan(Rads_SR180Removed_MeanBins)] Rads_SR180Removed_MeanBins = numpy.append(Rads_SR180Removed_MeanBins,Rads_SR180Removed_MeanBins[0]) Rads_SR270Removed_MeanBins,be71,bn71 = scipy.stats.binned_statistic(Rads_SR270Removed_Sorted,Rads_SR270Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _6Means = Rads_SR270Removed_MeanBins Rads_SR270Removed_MeanBins = Rads_SR270Removed_MeanBins[~numpy.isnan(Rads_SR270Removed_MeanBins)] Rads_SR270Removed_MeanBins = numpy.append(Rads_SR270Removed_MeanBins,Rads_SR270Removed_MeanBins[0]) Rads_SLM90Removed_MeanBins,be81,bn81 = scipy.stats.binned_statistic(Rads_SLM90Removed_Sorted,Rads_SLM90Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _7Means = Rads_SLM90Removed_MeanBins Rads_SLM90Removed_MeanBins = Rads_SLM90Removed_MeanBins[~numpy.isnan(Rads_SLM90Removed_MeanBins)] Rads_SLM90Removed_MeanBins = numpy.append(Rads_SLM90Removed_MeanBins,Rads_SLM90Removed_MeanBins[0]) Rads_SLM180Removed_MeanBins,be91,bn91 = scipy.stats.binned_statistic(Rads_SLM180Removed_Sorted,Rads_SLM180Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _8Means = Rads_SLM180Removed_MeanBins Rads_SLM180Removed_MeanBins = Rads_SLM180Removed_MeanBins[~numpy.isnan(Rads_SLM180Removed_MeanBins)] Rads_SLM180Removed_MeanBins = numpy.append(Rads_SLM180Removed_MeanBins,Rads_SLM180Removed_MeanBins[0]) Rads_SLM270Removed_MeanBins,be101,bn101 = scipy.stats.binned_statistic(Rads_SLM270Removed_Sorted,Rads_SLM270Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) _9Means = Rads_SLM270Removed_MeanBins Rads_SLM270Removed_MeanBins = Rads_SLM270Removed_MeanBins[~numpy.isnan(Rads_SLM270Removed_MeanBins)] Rads_SLM270Removed_MeanBins = numpy.append(Rads_SLM270Removed_MeanBins,Rads_SLM270Removed_MeanBins[0]) IF_Baseline_MeanBins,be12,bn12 = scipy.stats.binned_statistic(Rads_Baseline_Sorted,IF_Baseline_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_Baseline_MeanBins = IF_Baseline_MeanBins[~numpy.isnan(_BMeans)] IF_Baseline_MeanBins = numpy.append(IF_Baseline_MeanBins,IF_Baseline_MeanBins[0]) IF_1XRhythm_MeanBins,be22,bn22 = scipy.stats.binned_statistic(Rads_1XRhythm_Sorted,IF_ThetaX1_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_1XRhythm_MeanBins = IF_1XRhythm_MeanBins[~numpy.isnan(_1Means)] IF_1XRhythm_MeanBins = numpy.append(IF_1XRhythm_MeanBins,IF_1XRhythm_MeanBins[0]) IF_CA3Removed_MeanBins,be32,bn32 = scipy.stats.binned_statistic(Rads_CA3Removed_Sorted,IF_CA3Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_CA3Removed_MeanBins = IF_CA3Removed_MeanBins[~numpy.isnan(_2Means)] IF_CA3Removed_MeanBins = numpy.append(IF_CA3Removed_MeanBins,IF_CA3Removed_MeanBins[0]) IF_EC3Removed_MeanBins,be42,bn42 = scipy.stats.binned_statistic(Rads_EC3Removed_Sorted,IF_EC3Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_EC3Removed_MeanBins = IF_EC3Removed_MeanBins[~numpy.isnan(_3Means)] IF_EC3Removed_MeanBins = numpy.append(IF_EC3Removed_MeanBins,IF_EC3Removed_MeanBins[0]) IF_SR90Removed_MeanBins,be52,bn52 = scipy.stats.binned_statistic(Rads_SR90Removed_Sorted,IF_SR90Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_SR90Removed_MeanBins = IF_SR90Removed_MeanBins[~numpy.isnan(_4Means)] IF_SR90Removed_MeanBins = numpy.append(IF_SR90Removed_MeanBins,IF_SR90Removed_MeanBins[0]) IF_SR180Removed_MeanBins,be62,bn62 = scipy.stats.binned_statistic(Rads_SR180Removed_Sorted,IF_SR180Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_SR180Removed_MeanBins = IF_SR180Removed_MeanBins[~numpy.isnan(_5Means)] IF_SR180Removed_MeanBins = numpy.append(IF_SR180Removed_MeanBins,IF_SR180Removed_MeanBins[0]) IF_SR270Removed_MeanBins,be72,bn72 = scipy.stats.binned_statistic(Rads_SR270Removed_Sorted,IF_SR270Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_SR270Removed_MeanBins = IF_SR270Removed_MeanBins[~numpy.isnan(_6Means)] IF_SR270Removed_MeanBins = numpy.append(IF_SR270Removed_MeanBins,IF_SR270Removed_MeanBins[0]) IF_SLM90Removed_MeanBins,be82,bn82 = scipy.stats.binned_statistic(Rads_SLM90Removed_Sorted,IF_SLM90Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_SLM90Removed_MeanBins = IF_SLM90Removed_MeanBins[~numpy.isnan(_7Means)] IF_SLM90Removed_MeanBins = numpy.append(IF_SLM90Removed_MeanBins,IF_SLM90Removed_MeanBins[0]) IF_SLM180Removed_MeanBins,be92,bn92 = scipy.stats.binned_statistic(Rads_SLM180Removed_Sorted,IF_SLM180Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_SLM180Removed_MeanBins = IF_SLM180Removed_MeanBins[~numpy.isnan(_8Means)] IF_SLM180Removed_MeanBins = numpy.append(IF_SLM180Removed_MeanBins,IF_SLM180Removed_MeanBins[0]) IF_SLM270Removed_MeanBins,be102,bn102 = scipy.stats.binned_statistic(Rads_SLM270Removed_Sorted,IF_SLM270Removed_Sorted,statistic='mean',bins=bin_size,range=range_rads) IF_SLM270Removed_MeanBins = IF_SLM270Removed_MeanBins[~numpy.isnan(_9Means)] IF_SLM270Removed_MeanBins = numpy.append(IF_SLM270Removed_MeanBins,IF_SLM270Removed_MeanBins[0]) IF_Baseline_MinsBins,be111,bn111 = scipy.stats.binned_statistic(Rads_Baseline_Sorted,IF_Baseline_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_Baseline_MinsBins = IF_Baseline_MinsBins[~numpy.isnan(_BMeans)] IF_Baseline_MinsBins = numpy.append(IF_Baseline_MinsBins,IF_Baseline_MinsBins[0]) IF_1XRhythm_MinsBins,be211,bn211 = scipy.stats.binned_statistic(Rads_1XRhythm_Sorted,IF_ThetaX1_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_1XRhythm_MinsBins = IF_1XRhythm_MinsBins[~numpy.isnan(_1Means)] IF_1XRhythm_MinsBins = numpy.append(IF_1XRhythm_MinsBins,IF_1XRhythm_MinsBins[0]) IF_CA3Removed_MinsBins,be32,bn32 = scipy.stats.binned_statistic(Rads_CA3Removed_Sorted,IF_CA3Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_CA3Removed_MinsBins = IF_CA3Removed_MinsBins[~numpy.isnan(_2Means)] IF_CA3Removed_MinsBins = numpy.append(IF_CA3Removed_MinsBins,IF_CA3Removed_MinsBins[0]) IF_EC3Removed_MinsBins,be42,bn42 = scipy.stats.binned_statistic(Rads_EC3Removed_Sorted,IF_EC3Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_EC3Removed_MinsBins = IF_EC3Removed_MinsBins[~numpy.isnan(_3Means)] IF_EC3Removed_MinsBins = numpy.append(IF_EC3Removed_MinsBins,IF_EC3Removed_MinsBins[0]) IF_SR90Removed_MinsBins,be52,bn52 = scipy.stats.binned_statistic(Rads_SR90Removed_Sorted,IF_SR90Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_SR90Removed_MinsBins = IF_SR90Removed_MinsBins[~numpy.isnan(_4Means)] IF_SR90Removed_MinsBins = numpy.append(IF_SR90Removed_MinsBins,IF_SR90Removed_MinsBins[0]) IF_SR180Removed_MinsBins,be62,bn62 = scipy.stats.binned_statistic(Rads_SR180Removed_Sorted,IF_SR180Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_SR180Removed_MinsBins = IF_SR180Removed_MinsBins[~numpy.isnan(_5Means)] IF_SR180Removed_MinsBins = numpy.append(IF_SR180Removed_MinsBins,IF_SR180Removed_MinsBins[0]) IF_SR270Removed_MinsBins,be72,bn72 = scipy.stats.binned_statistic(Rads_SR270Removed_Sorted,IF_SR270Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_SR270Removed_MinsBins = IF_SR270Removed_MinsBins[~numpy.isnan(_6Means)] IF_SR270Removed_MinsBins = numpy.append(IF_SR270Removed_MinsBins,IF_SR270Removed_MinsBins[0]) IF_SLM90Removed_MinsBins,be82,bn82 = scipy.stats.binned_statistic(Rads_SLM90Removed_Sorted,IF_SLM90Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_SLM90Removed_MinsBins = IF_SLM90Removed_MinsBins[~numpy.isnan(_7Means)] IF_SLM90Removed_MinsBins = numpy.append(IF_SLM90Removed_MinsBins,IF_SLM90Removed_MinsBins[0]) IF_SLM180Removed_MinsBins,be92,bn92 = scipy.stats.binned_statistic(Rads_SLM180Removed_Sorted,IF_SLM180Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_SLM180Removed_MinsBins = IF_SLM180Removed_MinsBins[~numpy.isnan(_8Means)] IF_SLM180Removed_MinsBins = numpy.append(IF_SLM180Removed_MinsBins,IF_SLM180Removed_MinsBins[0]) IF_SLM270Removed_MinsBins,be102,bn102 = scipy.stats.binned_statistic(Rads_SLM270Removed_Sorted,IF_SLM270Removed_Sorted,statistic='min',bins=bin_size,range=range_rads) IF_SLM270Removed_MinsBins = IF_SLM270Removed_MinsBins[~numpy.isnan(_9Means)] IF_SLM270Removed_MinsBins = numpy.append(IF_SLM270Removed_MinsBins,IF_SLM270Removed_MinsBins[0]) IF_Baseline_MaxBins,be111,bn111 = scipy.stats.binned_statistic(Rads_Baseline_Sorted,IF_Baseline_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_Baseline_MaxBins = IF_Baseline_MaxBins[~numpy.isnan(_BMeans)] IF_Baseline_MaxBins = numpy.append(IF_Baseline_MaxBins,IF_Baseline_MaxBins[0]) IF_1XRhythm_MaxBins,be211,bn211 = scipy.stats.binned_statistic(Rads_1XRhythm_Sorted,IF_ThetaX1_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_1XRhythm_MaxBins = IF_1XRhythm_MaxBins[~numpy.isnan(_1Means)] IF_1XRhythm_MaxBins = numpy.append(IF_1XRhythm_MaxBins,IF_1XRhythm_MaxBins[0]) IF_CA3Removed_MaxBins,be32,bn32 = scipy.stats.binned_statistic(Rads_CA3Removed_Sorted,IF_CA3Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_CA3Removed_MaxBins = IF_CA3Removed_MaxBins[~numpy.isnan(_2Means)] IF_CA3Removed_MaxBins = numpy.append(IF_CA3Removed_MaxBins,IF_CA3Removed_MaxBins[0]) IF_EC3Removed_MaxBins,be42,bn42 = scipy.stats.binned_statistic(Rads_EC3Removed_Sorted,IF_EC3Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_EC3Removed_MaxBins = IF_EC3Removed_MaxBins[~numpy.isnan(_3Means)] IF_EC3Removed_MaxBins = numpy.append(IF_EC3Removed_MaxBins,IF_EC3Removed_MaxBins[0]) IF_SR90Removed_MaxBins,be52,bn52 = scipy.stats.binned_statistic(Rads_SR90Removed_Sorted,IF_SR90Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_SR90Removed_MaxBins = IF_SR90Removed_MaxBins[~numpy.isnan(_4Means)] IF_SR90Removed_MaxBins = numpy.append(IF_SR90Removed_MaxBins,IF_SR90Removed_MaxBins[0]) IF_SR180Removed_MaxBins,be62,bn62 = scipy.stats.binned_statistic(Rads_SR180Removed_Sorted,IF_SR180Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_SR180Removed_MaxBins = IF_SR180Removed_MaxBins[~numpy.isnan(_5Means)] IF_SR180Removed_MaxBins = numpy.append(IF_SR180Removed_MaxBins,IF_SR180Removed_MaxBins[0]) IF_SR270Removed_MaxBins,be72,bn72 = scipy.stats.binned_statistic(Rads_SR270Removed_Sorted,IF_SR270Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_SR270Removed_MaxBins = IF_SR270Removed_MaxBins[~numpy.isnan(_6Means)] IF_SR270Removed_MaxBins = numpy.append(IF_SR270Removed_MaxBins,IF_SR270Removed_MaxBins[0]) IF_SLM90Removed_MaxBins,be82,bn82 = scipy.stats.binned_statistic(Rads_SLM90Removed_Sorted,IF_SLM90Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_SLM90Removed_MaxBins = IF_SLM90Removed_MaxBins[~numpy.isnan(_7Means)] IF_SLM90Removed_MaxBins = numpy.append(IF_SLM90Removed_MaxBins,IF_SLM90Removed_MaxBins[0]) IF_SLM180Removed_MaxBins,be92,bn92 = scipy.stats.binned_statistic(Rads_SLM180Removed_Sorted,IF_SLM180Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_SLM180Removed_MaxBins = IF_SLM180Removed_MaxBins[~numpy.isnan(_8Means)] IF_SLM180Removed_MaxBins = numpy.append(IF_SLM180Removed_MaxBins,IF_SLM180Removed_MaxBins[0]) IF_SLM270Removed_MaxBins,be102,bn102 = scipy.stats.binned_statistic(Rads_SLM270Removed_Sorted,IF_SLM270Removed_Sorted,statistic='max',bins=bin_size,range=range_rads) IF_SLM270Removed_MaxBins = IF_SLM270Removed_MaxBins[~numpy.isnan(_9Means)] IF_SLM270Removed_MaxBins = numpy.append(IF_SLM270Removed_MaxBins,IF_SLM270Removed_MaxBins[0]) IF_Baseline_StdBins,be111,bn111 = scipy.stats.binned_statistic(Rads_Baseline_Sorted,IF_Baseline_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_Baseline_StdBins = IF_Baseline_StdBins[~numpy.isnan(_BMeans)] IF_Baseline_StdBins = numpy.append(IF_Baseline_StdBins,IF_Baseline_StdBins[0]) IF_1XRhythm_StdBins,be211,bn211 = scipy.stats.binned_statistic(Rads_1XRhythm_Sorted,IF_ThetaX1_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_1XRhythm_StdBins = IF_1XRhythm_StdBins[~numpy.isnan(_1Means)] IF_1XRhythm_StdBins = numpy.append(IF_1XRhythm_StdBins,IF_1XRhythm_StdBins[0]) IF_CA3Removed_StdBins,be32,bn32 = scipy.stats.binned_statistic(Rads_CA3Removed_Sorted,IF_CA3Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_CA3Removed_StdBins = IF_CA3Removed_StdBins[~numpy.isnan(_2Means)] IF_CA3Removed_StdBins = numpy.append(IF_CA3Removed_StdBins,IF_CA3Removed_StdBins[0]) IF_EC3Removed_StdBins,be42,bn42 = scipy.stats.binned_statistic(Rads_EC3Removed_Sorted,IF_EC3Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_EC3Removed_StdBins = IF_EC3Removed_StdBins[~numpy.isnan(_3Means)] IF_EC3Removed_StdBins = numpy.append(IF_EC3Removed_StdBins,IF_EC3Removed_StdBins[0]) IF_SR90Removed_StdBins,be52,bn52 = scipy.stats.binned_statistic(Rads_SR90Removed_Sorted,IF_SR90Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_SR90Removed_StdBins = IF_SR90Removed_StdBins[~numpy.isnan(_4Means)] IF_SR90Removed_StdBins = numpy.append(IF_SR90Removed_StdBins,IF_SR90Removed_StdBins[0]) IF_SR180Removed_StdBins,be62,bn62 = scipy.stats.binned_statistic(Rads_SR180Removed_Sorted,IF_SR180Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_SR180Removed_StdBins = IF_SR180Removed_StdBins[~numpy.isnan(_5Means)] IF_SR180Removed_StdBins = numpy.append(IF_SR180Removed_StdBins,IF_SR180Removed_StdBins[0]) IF_SR270Removed_StdBins,be72,bn72 = scipy.stats.binned_statistic(Rads_SR270Removed_Sorted,IF_SR270Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_SR270Removed_StdBins = IF_SR270Removed_StdBins[~numpy.isnan(_6Means)] IF_SR270Removed_StdBins = numpy.append(IF_SR270Removed_StdBins,IF_SR270Removed_StdBins[0]) IF_SLM90Removed_StdBins,be82,bn82 = scipy.stats.binned_statistic(Rads_SLM90Removed_Sorted,IF_SLM90Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_SLM90Removed_StdBins = IF_SLM90Removed_StdBins[~numpy.isnan(_7Means)] IF_SLM90Removed_StdBins = numpy.append(IF_SLM90Removed_StdBins,IF_SLM90Removed_StdBins[0]) IF_SLM180Removed_StdBins,be92,bn92 = scipy.stats.binned_statistic(Rads_SLM180Removed_Sorted,IF_SLM180Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_SLM180Removed_StdBins = IF_SLM180Removed_StdBins[~numpy.isnan(_8Means)] IF_SLM180Removed_StdBins = numpy.append(IF_SLM180Removed_StdBins,IF_SLM180Removed_StdBins[0]) IF_SLM270Removed_StdBins,be102,bn102 = scipy.stats.binned_statistic(Rads_SLM270Removed_Sorted,IF_SLM270Removed_Sorted,statistic='std',bins=bin_size,range=range_rads) IF_SLM270Removed_StdBins = IF_SLM270Removed_StdBins[~numpy.isnan(_9Means)] IF_SLM270Removed_StdBins = numpy.append(IF_SLM270Removed_StdBins,IF_SLM270Removed_StdBins[0]) axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_Baseline_Sorted,IF_Baseline_Sorted,color='lightblue',label='Base') axarr.plot(Rads_1XRhythm_Sorted,IF_ThetaX1_Sorted,color='tomato',label='X1 Theta') axarr.plot(Rads_CA3Removed_Sorted,IF_CA3Removed_Sorted,'g',label='-CA3') axarr.plot(Rads_EC3Removed_Sorted,IF_EC3Removed_Sorted,'c',label='-EC3') axarr.plot(Rads_SR90Removed_Sorted,IF_SR90Removed_Sorted,'m',label='-SR90') axarr.plot(Rads_SR180Removed_Sorted,IF_SR180Removed_Sorted,'y',label='-SR180') axarr.plot(Rads_SR270Removed_Sorted,IF_SR270Removed_Sorted,'b',label='-SR270') axarr.plot(Rads_SLM90Removed_Sorted,IF_SLM90Removed_Sorted,'k',label='-SLM90') axarr.plot(Rads_SLM180Removed_Sorted,IF_SLM180Removed_Sorted,color='orange',label='-SLM180') axarr.plot(Rads_SLM270Removed_Sorted,IF_SLM270Removed_Sorted,'r',label='-SLM270') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlot_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlot_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_Baseline_MeanBins,IF_Baseline_MeanBins,color='lightblue',label='Base') axarr.fill_between(Rads_Baseline_MeanBins,numpy.clip(IF_Baseline_MeanBins-IF_Baseline_StdBins,0,1000),numpy.clip(IF_Baseline_MeanBins+IF_Baseline_StdBins,0,1000),alpha=0.5, edgecolor='lightblue', facecolor='lightblue') axarr.plot(Rads_1XRhythm_MeanBins,IF_1XRhythm_MeanBins,color='tomato',label='X1 Theta') axarr.fill_between(Rads_1XRhythm_MeanBins,numpy.clip(IF_1XRhythm_MeanBins-IF_1XRhythm_StdBins,0,1000),numpy.clip(IF_1XRhythm_MeanBins+IF_1XRhythm_StdBins,0,1000),alpha=0.5, edgecolor='tomato', facecolor='tomato') axarr.plot(Rads_CA3Removed_MeanBins,IF_CA3Removed_MeanBins,'g',label='-CA3') axarr.fill_between(Rads_CA3Removed_MeanBins,numpy.clip(IF_CA3Removed_MeanBins-IF_CA3Removed_StdBins,0,1000),numpy.clip(IF_CA3Removed_MeanBins+IF_CA3Removed_StdBins,0,1000),alpha=0.5, edgecolor='g', facecolor='g') axarr.plot(Rads_EC3Removed_MeanBins,IF_EC3Removed_MeanBins,'c',label='-EC3') axarr.fill_between(Rads_EC3Removed_MeanBins,numpy.clip(IF_EC3Removed_MeanBins-IF_EC3Removed_StdBins,0,1000),numpy.clip(IF_EC3Removed_MeanBins+IF_EC3Removed_StdBins,0,1000),alpha=0.5, edgecolor='c', facecolor='c') axarr.plot(Rads_SR90Removed_MeanBins,IF_SR90Removed_MeanBins,'m',label='-SR90') axarr.fill_between(Rads_SR90Removed_MeanBins,numpy.clip(IF_SR90Removed_MeanBins-IF_SR90Removed_StdBins,0,1000),numpy.clip(IF_SR90Removed_MeanBins+IF_SR90Removed_StdBins,0,1000),alpha=0.5, edgecolor='m', facecolor='m') axarr.plot(Rads_SR180Removed_MeanBins,IF_SR180Removed_MeanBins,'y',label='-SR180') axarr.fill_between(Rads_SR180Removed_MeanBins,numpy.clip(IF_SR180Removed_MeanBins-IF_SR180Removed_StdBins,0,1000),numpy.clip(IF_SR180Removed_MeanBins+IF_SR180Removed_StdBins,0,1000),alpha=0.5, edgecolor='y', facecolor='y') axarr.plot(Rads_SR270Removed_MeanBins,IF_SR270Removed_MeanBins,'b',label='-SR270') axarr.fill_between(Rads_SR270Removed_MeanBins,numpy.clip(IF_SR270Removed_MeanBins-IF_SR270Removed_StdBins,0,1000),numpy.clip(IF_SR270Removed_MeanBins+IF_SR270Removed_StdBins,0,1000),alpha=0.5, edgecolor='b', facecolor='b') axarr.plot(Rads_SLM90Removed_MeanBins,IF_SLM90Removed_MeanBins,'k',label='-SLM90') axarr.fill_between(Rads_SLM90Removed_MeanBins,numpy.clip(IF_SLM90Removed_MeanBins-IF_SLM90Removed_StdBins,0,1000),numpy.clip(IF_SLM90Removed_MeanBins+IF_SLM90Removed_StdBins,0,1000),alpha=0.5, edgecolor='k', facecolor='k') axarr.plot(Rads_SLM180Removed_MeanBins,IF_SLM180Removed_MeanBins,color='orange',label='-SLM180') axarr.fill_between(Rads_SLM180Removed_MeanBins,numpy.clip(IF_SLM180Removed_MeanBins-IF_SLM180Removed_StdBins,0,1000),numpy.clip(IF_SLM180Removed_MeanBins+IF_SLM180Removed_StdBins,0,1000),alpha=0.5, edgecolor='orange', facecolor='orange') axarr.plot(Rads_SLM270Removed_MeanBins,IF_SLM270Removed_MeanBins,'r',label='-SLM270') axarr.fill_between(Rads_SLM270Removed_MeanBins,numpy.clip(IF_SLM270Removed_MeanBins-IF_SLM270Removed_StdBins,0,1000),numpy.clip(IF_SLM270Removed_MeanBins+IF_SLM270Removed_StdBins,0,1000),alpha=0.5, edgecolor='r', facecolor='r') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinned_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinned_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_Baseline_MeanBins,IF_Baseline_MeanBins,color='lightblue',label='Base') axarr.fill_between(Rads_Baseline_MeanBins,numpy.clip(IF_Baseline_MeanBins-IF_Baseline_StdBins,0,1000),numpy.clip(IF_Baseline_MeanBins+IF_Baseline_StdBins,0,1000),alpha=0.5, edgecolor='lightblue', facecolor='lightblue') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_Baseline_MeanBins+IF_Baseline_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_BMeans, heights11, width=width, bottom=bottom,color='lightblue') # for ph in range(0,len(PrefPhase_Baseline)): # axarr.annotate(' ', xy=(PrefPhase_Baseline[ph], numpy.amax(numpy.clip(IF_Baseline_MeanBins+IF_Baseline_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedBaseline_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedBaseline_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_1XRhythm_MeanBins,IF_1XRhythm_MeanBins,color='tomato',label='X1 Theta') axarr.fill_between(Rads_1XRhythm_MeanBins,numpy.clip(IF_1XRhythm_MeanBins-IF_1XRhythm_StdBins,0,1000),numpy.clip(IF_1XRhythm_MeanBins+IF_1XRhythm_StdBins,0,1000),alpha=0.5, edgecolor='tomato', facecolor='tomato') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_1XRhythm_MeanBins+IF_1XRhythm_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_1Means, heights22, width=width, bottom=bottom,color='tomato') # for ph in range(0,len(PrefPhase_ThetaX1)): # axarr.annotate(' ', xy=(PrefPhase_ThetaX1[ph], numpy.amax(numpy.clip(IF_1XRhythm_MeanBins+IF_1XRhythm_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinned1XTheta_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinned1XTheta_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_CA3Removed_MeanBins,IF_CA3Removed_MeanBins,'g',label='-CA3') axarr.fill_between(Rads_CA3Removed_MeanBins,numpy.clip(IF_CA3Removed_MeanBins-IF_CA3Removed_StdBins,0,1000),numpy.clip(IF_CA3Removed_MeanBins+IF_CA3Removed_StdBins,0,1000),alpha=0.5, edgecolor='g', facecolor='g') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_CA3Removed_MeanBins+IF_CA3Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_2Means, heights33, width=width, bottom=bottom,color='g') # for ph in range(0,len(PrefPhase_CA3Removed)): # axarr.annotate(' ', xy=(PrefPhase_CA3Removed[ph], numpy.amax(numpy.clip(IF_CA3Removed_MeanBins+IF_CA3Removed_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedCA3Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedCA3Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_EC3Removed_MeanBins,IF_EC3Removed_MeanBins,'c',label='-EC3') axarr.fill_between(Rads_EC3Removed_MeanBins,numpy.clip(IF_EC3Removed_MeanBins-IF_EC3Removed_StdBins,0,1000),numpy.clip(IF_EC3Removed_MeanBins+IF_EC3Removed_StdBins,0,1000),alpha=0.5, edgecolor='c', facecolor='c') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_EC3Removed_MeanBins+IF_EC3Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_3Means, heights44, width=width, bottom=bottom,color='c') # for ph in range(0,len(PrefPhase_EC3Removed)): # axarr.annotate(' ', xy=(PrefPhase_EC3Removed[ph], numpy.amax(numpy.clip(IF_EC3Removed_MeanBins+IF_EC3Removed_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedEC3Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedEC3Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_SR90Removed_MeanBins,IF_SR90Removed_MeanBins,'m',label='-SR90') axarr.fill_between(Rads_SR90Removed_MeanBins,numpy.clip(IF_SR90Removed_MeanBins-IF_SR90Removed_StdBins,0,1000),numpy.clip(IF_SR90Removed_MeanBins+IF_SR90Removed_StdBins,0,1000),alpha=0.5, edgecolor='m', facecolor='m') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_SR90Removed_MeanBins+IF_SR90Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_4Means, heights55, width=width, bottom=bottom,color='m') # for ph in range(0,len(PrefPhase_OLMRemoved)): # axarr.annotate(' ', xy=(PrefPhase_OLMRemoved[ph], numpy.amax(numpy.clip(IF_OLMRemoved_MeanBins+IF_OLMRemoved_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSR90Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSR90Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_SR180Removed_MeanBins,IF_SR180Removed_MeanBins,'y',label='-SR180') axarr.fill_between(Rads_SR180Removed_MeanBins,numpy.clip(IF_SR180Removed_MeanBins-IF_SR180Removed_StdBins,0,1000),numpy.clip(IF_SR180Removed_MeanBins+IF_SR180Removed_StdBins,0,1000),alpha=0.5, edgecolor='y', facecolor='y') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_SR180Removed_MeanBins+IF_SR180Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_5Means, heights66, width=width, bottom=bottom,color='y') # for ph in range(0,len(PrefPhase_IS2NGFRemoved)): # axarr.annotate(' ', xy=(PrefPhase_IS2NGFRemoved[ph], numpy.amax(numpy.clip(IF_IS2NGFRemoved_MeanBins+IF_IS2NGFRemoved_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSR180Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSR180Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_SR270Removed_MeanBins,IF_SR270Removed_MeanBins,'b',label='-SR270') axarr.fill_between(Rads_SR270Removed_MeanBins,numpy.clip(IF_SR270Removed_MeanBins-IF_SR270Removed_StdBins,0,1000),numpy.clip(IF_SR270Removed_MeanBins+IF_SR270Removed_StdBins,0,1000),alpha=0.5, edgecolor='b', facecolor='b') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_SR270Removed_MeanBins+IF_SR270Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_6Means, heights77, width=width, bottom=bottom,color='b') # for ph in range(0,len(PrefPhase_BISRemoved)): # axarr.annotate(' ', xy=(PrefPhase_BISRemoved[ph], numpy.amax(numpy.clip(IF_BISRemoved_MeanBins+IF_BISRemoved_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSR270Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSR270Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_SLM90Removed_MeanBins,IF_SLM90Removed_MeanBins,'k',label='-SLM90') axarr.fill_between(Rads_SLM90Removed_MeanBins,numpy.clip(IF_SLM90Removed_MeanBins-IF_SLM90Removed_StdBins,0,1000),numpy.clip(IF_SLM90Removed_MeanBins+IF_SLM90Removed_StdBins,0,1000),alpha=0.5, edgecolor='k', facecolor='k') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_SLM90Removed_MeanBins+IF_SLM90Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_7Means, heights88, width=width, bottom=bottom,color='k') # for ph in range(0,len(PrefPhase_IS1Removed)): # axarr.annotate(' ', xy=(PrefPhase_IS1Removed[ph], numpy.amax(numpy.clip(IF_IS1Removed_MeanBins+IF_IS1Removed_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSLM90Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSLM90Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_SLM180Removed_MeanBins,IF_SLM180Removed_MeanBins,color='orange',label='-SLM180') axarr.fill_between(Rads_SLM180Removed_MeanBins,numpy.clip(IF_SLM180Removed_MeanBins-IF_SLM180Removed_StdBins,0,1000),numpy.clip(IF_SLM180Removed_MeanBins+IF_SLM180Removed_StdBins,0,1000),alpha=0.5, edgecolor='orange', facecolor='orange') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_SLM180Removed_MeanBins+IF_SLM180Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_8Means, heights99, width=width, bottom=bottom,color='orange') # for ph in range(0,len(PrefPhase_IS1Removed)): # axarr.annotate(' ', xy=(PrefPhase_IS1Removed[ph], numpy.amax(numpy.clip(IF_IS1Removed_MeanBins+IF_IS1Removed_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSLM180Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSLM180Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() axarr = pyplot.subplot(111, projection='polar') axarr.plot(Rads_SLM270Removed_MeanBins,IF_SLM270Removed_MeanBins,'r',label='-SLM270') axarr.fill_between(Rads_SLM270Removed_MeanBins,numpy.clip(IF_SLM270Removed_MeanBins-IF_SLM270Removed_StdBins,0,1000),numpy.clip(IF_SLM270Removed_MeanBins+IF_SLM270Removed_StdBins,0,1000),alpha=0.5, edgecolor='r', facecolor='r') position = 292.5 axarr._r_label_position._t = (position, 0) axarr._r_label_position.invalidate() bottom = numpy.amax(numpy.clip(IF_SLM270Removed_MeanBins+IF_SLM270Removed_StdBins,0,1000))+5 width = range_rads[1]/(bin_size+1) axarr.bar(_9Means, heights1010, width=width, bottom=bottom,color='r') # for ph in range(0,len(PrefPhase_IS1Removed)): # axarr.annotate(' ', xy=(PrefPhase_IS1Removed[ph], numpy.amax(numpy.clip(IF_IS1Removed_MeanBins+IF_IS1Removed_StdBins,0,1000))), xytext=(0, 0),arrowprops=dict(facecolor='black', shrink=0.05),) axarr.set_xticklabels(['0$^\circ$', '45$^\circ$', '90$^\circ$\nPeak', '135$^\circ$', '180$^\circ$', '225$^\circ$', '270$^\circ$\nTrough', '315$^\circ$']) pyplot.tight_layout() pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSLM270Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.pdf', bbox_inches='tight') pyplot.savefig('PLOTfiles/' + Case + '_PolarPlotBinnedSLM270Removed_' + ExampleString + '_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.png', bbox_inches='tight') pyplot.gcf().clear() pyplot.cla() pyplot.clf() pyplot.close() numpy.save('NPYfiles/' + Case + '_Areas_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',numpy.array([Area1,Area2,Area3,Area4,Area5,Area6,Area7,Area8,Area9,Area10],dtype=numpy.float)) numpy.save('NPYfiles/' + Case + '_e8Hz_' + str('%0.2f' %h.prethetanoise) + '_prethetanoise.npy',numpy.array([e8Hz1,e8Hz2,e8Hz3,e8Hz4,e8Hz5,e8Hz6,e8Hz7,e8Hz8,e8Hz9,e8Hz10],dtype=numpy.float)) # LNI_LNE_LIS_LES # HNI_LNE_LIS_LES # LNI_HNE_LIS_LES # HNI_HNE_LIS_LES # LNI_LNE_HIS_LES # HNI_LNE_HIS_LES # LNI_HNE_HIS_LES # HNI_HNE_HIS_LES # LNI_LNE_LIS_HES # HNI_LNE_LIS_HES # LNI_HNE_LIS_HES # HNI_HNE_LIS_HES # LNI_LNE_HIS_HES # HNI_LNE_HIS_HES # LNI_HNE_HIS_HES # HNI_HNE_HIS_HES