TITLE Cardiac IKur current & nonspec cation current with identical kinetics : Hodgkin - Huxley type channels, modified to fit IKur data from Feng et al Am J Physiol 1998 275:H1717 - H 1725 : Suffix from Kv15 to Kv1_5 NEURON { SUFFIX Kv1_5 USEION k READ ek,ki,ko WRITE ik USEION na READ nai,nao USEION no WRITE ino VALENCE 1: nonspecific cation current RANGE gKur, ik, ino, Tauact, Tauinactf,Tauinacts, gnonspec, nao, nai, ko,ki RANGE minf, ninf, uinf, mtau , ntau, utau } UNITS { (mA) = (milliamp) (mV) = (millivolt) (mM) = (milli/liter) F = (faraday) (coulombs) R = (k-mole) (joule/degC) } PARAMETER { gKur=0.13195e-3 (S/cm2) <0,1e9> Tauact=1 (ms) Tauinactf=1 (ms) Tauinacts=1 (ms) gnonspec=0 (S/cm2) <0,1e9> } STATE { m n u } ASSIGNED { v (mV) celsius (degC) : 37 ik (mA/cm2) minf ninf uinf mtau (ms) ntau (ms) utau (ms) ek (mV) ino (mA/cm2) ki (mM) ko (mM) nai (mM) nao (mM) } INITIAL { rates(v) m = minf n = ninf u = uinf } BREAKPOINT { LOCAL z z = (R*(celsius+273.15))/F SOLVE states METHOD derivimplicit ik = gKur*(0.1 + 1/(1 + exp(-(v - 15)/13)))*m*m*m*n*u*(v - ek) ino=gnonspec*(0.1 + 1/(1 + exp(-(v - 15)/13)))*m*m*m*n*u*(v - z*log((nao+ko)/(nai+ki))) } DERIVATIVE states { : exact when v held constant rates(v) m' = (minf - m)/mtau n' = (ninf - n)/ntau u' = (uinf - u)/utau } UNITSOFF FUNCTION alp(v(mV),i) { LOCAL q10 : order m n v = v q10 = 2.2^((celsius - 37)/10) if (i==0) { alp = q10*0.65/(exp(-(v + 10)/8.5) + exp(-(v - 30)/59)) } else if (i==1) { alp = 0.001*q10/(2.4 +10.9* exp(-(v + 90)/78)) } } FUNCTION bet(v(mV),i) (/ms) { LOCAL q10 : order m n u v = v q10 = 2.2^((celsius - 37)/10) if (i==0){ bet = q10*0.65/(2.5 + exp((v + 82)/17)) }else if (i==1){ bet = q10*0.001*exp((v - 168)/16) } } FUNCTION ce(v(mV),i)(/ms) { : order m n u v = v if (i==0) { ce = 1/(1 + exp(-(v + 30.3)/9.6)) }else if (i==1){ ce = 1*(0.25+1/(1.35 + exp((v + 7)/14))) }else if (i==2){ ce = 1*(0.1+1/(1.1 + exp((v + 7)/14))) } } PROCEDURE rates(v) {LOCAL a,b,c : a = alp(v,0) b=bet(v,0) c = ce(v,0) mtau = 1/(a + b)/3*Tauact minf = c a = alp(v,1) b=bet(v,1) c = ce(v,1) ntau = 1/(a + b)/3*Tauinactf ninf = c c = ce(v,2) uinf = c utau = 6800*Tauinacts } UNITSON