TITLE Low threshold calcium current Cerebellum Purkinje Cell Model COMMENT Q10 is estimated from this work, Temperature dependence of T-type Calcium channel gating, NEUROSCIENCE written by Yunliang Zang according to the data provided by Stephane Diudone, compared with the summarised data from stephane, T type calcium channels has two gates. so the activation curve was refitted. The junction potential is -6.6 mV It does not work even changing it back to cai April 16th, 2015 This version does not contribute to the calcium concentration and BK together with SK. ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX CaT3_1 : USEION ca READ cai, cao WRITE ica VALENCE 2 : NONSPECIFIC_CURRENT i USEION ca READ cai,cao USEION Ca WRITE iCa VALENCE 2 RANGE g, pcabar, minf, taum, hinf, tauh RANGE iCa, m ,h : THREADSAFE } UNITS { (molar) = (1/liter) (mV) = (millivolt) (mA) = (milliamp) (mM) = (millimolar) } CONSTANT { q10 = 1.0913 :estimate from Iftinca F = 9.6485e4 (coulombs) R = 8.3145 (joule/kelvin) } PARAMETER { v (mV) celsius (degC) eca (mV) pcabar = 2.5e-4 (cm/s) cai = 1e-4 (mM) : adjusted for eca=120 mV cao = 2 (mM) v0_m_inf = -42.206 (mV) v0_h_inf = -75.118 (mV) vshift = -6.6 :liquid junction potential k_m_inf = -4.7056 (mV) k_h_inf = 6.4635 (mV) C_tau_m = 1.2757 A_tau_m = -2.3199 B_tau_m = 2.5712 v0_tau_m1 = -48.048 (mV) v0_tau_m2 = -28.386 (mV) k_tau_m1 = 30.655 (mV) k_tau_m2 = 9.6306 (mV) C_tau_h = 0.0076 A_tau_h = 0.17746 B_tau_h = 0.13402 v0_tau_h1 = -58.535 (mV) v0_tau_h2=-101.436 k_tau_h1 = 6.2692 (mV) k_tau_h2 = -5.5845 (mV) } STATE { m h } ASSIGNED { iCa (mA/cm2) g (coulombs/cm3) minf taum (ms) hinf tauh (ms) qt T (kelvin) E (volt) zeta } BREAKPOINT { SOLVE castate METHOD cnexp iCa = (1e3) *pcabar*m*m *m*h * g } DERIVATIVE castate { evaluate_fct(v) m' = (minf - m) / taum h' = (hinf - h) / tauh } FUNCTION ghk2( v (mV), ci (mM), co (mM), z ) (coulombs/cm3) { E = (1e-3) * v zeta = (z*F*E)/(R*T) if ( fabs(1-exp(-zeta)) < 1e-6 ) { ghk2 = (1e-6) * (z*F) * (ci - co*exp(-zeta)) * (1 + zeta/2) } else { ghk2 = (1e-6) * (z*zeta*F) * (ci - co*exp(-zeta)) / (1-exp(-zeta)) } } UNITSOFF INITIAL { T = kelvinfkt (celsius) qt = q10^((celsius-32 (degC))/10 (degC)) evaluate_fct(v) m = minf h = hinf } PROCEDURE evaluate_fct(v(mV)) { minf = 1.0 / ( 1 + exp((v - v0_m_inf-vshift)/k_m_inf) )^(1/3) hinf = 1.0 / ( 1 + exp((v - v0_h_inf-vshift)/k_h_inf) ) taum = 1/( C_tau_m + A_tau_m / (1+exp((v0_tau_m1-v-vshift)/ k_tau_m1))+ B_tau_m/ (1+exp((v0_tau_m2-v-vshift)/k_tau_m2)))/qt tauh = 1/( C_tau_h + A_tau_h / (1+exp((v0_tau_h1-v-vshift)/ k_tau_h1))+ B_tau_h/ (1+exp((v0_tau_h2-v-vshift)/k_tau_h2)))/qt g = ghk2(v-vshift, cai, cao, 2) } FUNCTION kelvinfkt( t (degC) ) (kelvin) { kelvinfkt = 273.19 + t } UNITSON