: Calcium ion accumulation with radial and longitudinal diffusion and pump NEURON { SUFFIX cdp20N_FD2 USEION ca READ cao, cai, ica WRITE cai RANGE ica_pmp :RANGE pump_0 GLOBAL vrat, TotalPump : vrat must be GLOBAL--see INITIAL block : however TotalBuffer and TotalPump may be RANGE : THREADSAFE } DEFINE Nannuli 20 UNITS { (mol) = (1) (molar) = (1/liter) (mM) = (millimolar) (um) = (micron) (mA) = (milliamp) FARADAY = (faraday) (10000 coulomb) PI = (pi) (1) } PARAMETER { celsius =34 (degC) :cainull =2.5e-4 (mM) cainull = 45e-6 (mM) mginull =.59 (mM) DCa = .233 (um2/ms) Dbtc = 0.007 (um2/ms) Ddmnpe = 0.08 (um2/ms) Dcbd1 = .028 (um2/ms) Dcbd2 = 0 (um2/ms) Dpar = .043 (um2/ms) : values for benzothiazole coumarin (BTC) BTCnull = 0 (mM) b1 = 5.33 (/ms mM) b2 = 0.08 (/ms) : values for caged compound DMNPE-4 DMNPEnull = 0 (mM) c1 = 5.63 (/ms mM) c2 = 0.107e-3 (/ms) : values for Calbindin (2 high and 2 low affinity binding sites) : CBnull= .16 (mM) CBnull= .08 nf1 =43.5 (/ms mM) nf2 =3.58e-2 (/ms) ns1 =5.5 (/ms mM) ns2 =0.26e-2 (/ms) : values for Parvalbumin : PVnull = .08 (mM) PVnull = .04 (mM) m1 = 1.07e2 (/ms mM) m2 = 9.5e-4 (/ms) p1 = 0.8 (/ms mM) p2 = 2.5e-2 (/ms) kpmp1 = 3e3 (/mM-ms) kpmp2 = 1.75e1 (/ms) kpmp3 = 7.255e1 (/ms) : to eliminate pump, set TotalPump to 0 in hoc TotalPump = 1e-15 beta = 1(1) :introducing beta to take care of other ER mechanisms(SERCA and leak channel density) vmax =0.1 Kp = 2.7e-3 (mM) } ASSIGNED { diam (um) ica (mA/cm2) ica_pmp (mA/cm2) : ica_pmp_last (mA/cm2) parea (um) : pump area per unit length cai (mM) mgi (mM) vrat[Nannuli] (um2) : dimensionless : numeric value of vrat[i] equals the volume : of annulus i of a 1um diameter cylinder : multiply by diam^2 to get volume per um length } CONSTANT { cao = 2 (mM) } STATE { : ca[0] is equivalent to cai : ca[] are very small, so specify absolute tolerance : let it be ~1.5 - 2 orders of magnitude smaller than baseline level ca[Nannuli] (mM) mg[Nannuli] (mM) <1e-7> CB[Nannuli] (mM) CB_f_ca[Nannuli] (mM) CB_ca_s[Nannuli] (mM) CB_ca_ca[Nannuli] (mM) iCB[Nannuli] (mM) iCB_f_ca[Nannuli] (mM) iCB_ca_s[Nannuli] (mM) iCB_ca_ca[Nannuli] (mM) PV[Nannuli] (mM) PV_ca[Nannuli] (mM) PV_mg[Nannuli] (mM) pump (mol/cm2) <1e-15> pumpca (mol/cm2) <1e-15> } BREAKPOINT { SOLVE state METHOD sparse : ica_pmp_last = ica_pmp : ica = ica_pmp } LOCAL factors_done INITIAL { if (factors_done == 0) { : flag becomes 1 in the first segment factors_done = 1 : all subsequent segments will have factors() : vrat = 0 unless vrat is GLOBAL } FROM i=0 TO Nannuli-1 { ca[i] = cainull mg[i] = mginull CB[i] = 0.8*ssCB( kdf(), kds()) CB_f_ca[i] = 0.8*ssCBfast( kdf(), kds()) CB_ca_s[i] = 0.8*ssCBslow( kdf(), kds()) CB_ca_ca[i] = 0.8*ssCBca( kdf(), kds()) iCB[i] = 0.2*ssCB( kdf(), kds()) iCB_f_ca[i] = 0.2*ssCBfast( kdf(), kds()) iCB_ca_s[i] = 0.2*ssCBslow( kdf(), kds()) iCB_ca_ca[i] = 0.2*ssCBca(kdf(), kds()) PV[i] = ssPV( kdc(), kdm()) PV_ca[i] = ssPVca(kdc(), kdm()) PV_mg[i] = ssPVmg(kdc(), kdm()) } parea = PI*diam ica = 0 ica_pmp = 0 : ica_pmp_last = 0 pump = TotalPump pumpca = 0 } LOCAL radii[Nannuli] LOCAL frat[Nannuli] : scales the rate constants for model geometry PROCEDURE factors() { LOCAL r, dr2, dr3 r = diam/2 : starts at edge (half diam) : dr2 = 0.1 : full thickness of outermost annulus, : half thickness of all other annuli dr2 = 0.0368 : full thickness of outermost annulus, dr3 = (r-dr2)/(Nannuli-1) :other shells thickness radii[0] = r radii[1] = r - dr2 FROM i=2 TO Nannuli-1 { radii[i] = radii[i-1]- dr3 printf("%f\n",radii[i]) } vrat[0] = 0 frat[0] = 2*r FROM i=0 TO Nannuli-2 { vrat[i] = PI*((radii[i]*radii[i])-(radii[i+1]*radii[i+1])) } vrat[Nannuli-1] = PI*radii[Nannuli-1]*radii[Nannuli-1] FROM i=1 TO Nannuli-1 { if (i==1) { frat[i] = 2*PI*radii[i]/(dr2+(dr3/2)) } else if (i>1&&i<(Nannuli-1)) { frat[i] = 2*PI*radii[i]/dr3 } else if (i==(Nannuli-1)) { frat[i] = 2*PI*radii[i]/((dr3/2)+radii[i]) } } } LOCAL dsqvol : can't define local variable in KINETIC block : or use in COMPARTMENT statement KINETIC state { COMPARTMENT i, vrat[i] {ca mg CB CB_f_ca CB_ca_s CB_ca_ca iCB iCB_f_ca iCB_ca_s iCB_ca_ca PV PV_ca PV_mg} COMPARTMENT (1e10)*parea {pump pumpca} :pump : ~ ca[0] + pump <-> pumpca (kpmp1*parea*(1e10), kpmp2*parea*(1e10)) : ~ pumpca <-> pump (kpmp3*parea*(1e10), 0) : CONSERVE pump + pumpca = TotalPump * parea * (1e10) : ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea : all currents except pump : ica is Ca efflux ~ ca[0] << (-ica*PI*diam/(2*FARADAY)) FROM i=0 TO Nannuli-1 { ~ ca[i] << (-beta*vmax*vrat[i]*ca[i] / (ca[i] + kpmp2/kpmp1)) } :RADIAL DIFFUSION OF ca, mg and mobile buffers FROM i=0 TO Nannuli-2 { ~ ca[i] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1]) ~ mg[i] <-> mg[i+1] (DCa*frat[i+1], DCa*frat[i+1]) ~ CB[i] <-> CB[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1]) ~ CB_f_ca[i] <-> CB_f_ca[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1]) ~ CB_ca_s[i] <-> CB_ca_s[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1]) ~ CB_ca_ca[i] <-> CB_ca_ca[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1]) ~ PV[i] <-> PV[i+1] (Dpar*frat[i+1], Dpar*frat[i+1]) ~ PV_ca[i] <-> PV_ca[i+1] (Dpar*frat[i+1], Dpar*frat[i+1]) ~ PV_mg[i] <-> PV_mg[i+1] (Dpar*frat[i+1], Dpar*frat[i+1]) } FROM i=0 TO Nannuli-1 { dsqvol = vrat[i] :Calbindin ~ ca[i] + CB[i] <-> CB_ca_s[i] (nf1*dsqvol, nf2*dsqvol) ~ ca[i] + CB[i] <-> CB_f_ca[i] (ns1*dsqvol, ns2*dsqvol) ~ ca[i] + CB_f_ca[i] <-> CB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol) ~ ca[i] + CB_ca_s[i] <-> CB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol) ~ ca[i] + iCB[i] <-> iCB_ca_s[i] (nf1*dsqvol, nf2*dsqvol) ~ ca[i] + iCB[i] <-> iCB_f_ca[i] (ns1*dsqvol, ns2*dsqvol) ~ ca[i] + iCB_f_ca[i] <-> iCB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol) ~ ca[i] + iCB_ca_s[i] <-> iCB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol) :Paravalbumin ~ ca[i] + PV[i] <-> PV_ca[i] (m1*dsqvol, m2*dsqvol) ~ mg[i] + PV[i] <-> PV_mg[i] (p1*dsqvol, p2*dsqvol) } cai = ca[0] mgi = mg[0] } FUNCTION ssCB( kdf(), kds()) (mM) { ssCB = CBnull/(1+kdf()+kds()+(kdf()*kds())) } FUNCTION ssCBfast( kdf(), kds()) (mM) { ssCBfast = (CBnull*kds())/(1+kdf()+kds()+(kdf()*kds())) } FUNCTION ssCBslow( kdf(), kds()) (mM) { ssCBslow = (CBnull*kdf())/(1+kdf()+kds()+(kdf()*kds())) } FUNCTION ssCBca(kdf(), kds()) (mM) { ssCBca = (CBnull*kdf()*kds())/(1+kdf()+kds()+(kdf()*kds())) } FUNCTION kdf() (1) { kdf = (cainull*nf1)/nf2 } FUNCTION kds() (1) { kds = (cainull*ns1)/ns2 } FUNCTION kdc() (1) { kdc = (cainull*m1)/m2 } FUNCTION kdm() (1) { kdm = (mginull*p1)/p2 } FUNCTION ssPV( kdc(), kdm()) (mM) { ssPV = PVnull/(1+kdc()+kdm()) } FUNCTION ssPVca( kdc(), kdm()) (mM) { ssPVca = (PVnull*kdc)/(1+kdc+kdm) } FUNCTION ssPVmg( kdc(), kdm()) (mM) { ssPVmg = (PVnull*kdm())/(1+kdc()+kdm()) }