TITLE P-type calcium channel COMMENT According to Benton&Raman data lower threshold but relatively large time constant compared with Sungho's model (According to Bruce Bean) Also the ssa is steep. In this model, it is better not to shift the SSA to the left. time speeded up by 2 times May 9 2016 (no longer) ENDCOMMENT NEURON { SUFFIX newCaP USEION ca READ cai, cao WRITE ica RANGE pcabar, ica,vshift,kt GLOBAL minf, taum GLOBAL monovalConc, monovalPerm : THREADSAFE } UNITS { (mV) = (millivolt) (mA) = (milliamp) (nA) = (nanoamp) (pA) = (picoamp) (S) = (siemens) (nS) = (nanosiemens) (pS) = (picosiemens) (um) = (micron) (molar) = (1/liter) (mM) = (millimolar) } CONSTANT { q10 = 3 F = 9.6485e4 (coulombs) R = 8.3145 (joule/kelvin) : cv = 19 (mV) : ck = 5.5 (mV) cv = 30.5 (mV) ck = 4.113 (mV) } PARAMETER { v (mV) celsius (degC) cai (mM) cao (mM) vshift =0 pcabar = 6e-5 (cm/s) monovalConc = 140 (mM) monovalPerm = 0 kt=1 } ASSIGNED { qt ica (mA/cm2) minf taum (ms) T (kelvin) E (volt) zeta } STATE { m } INITIAL { qt = q10^((celsius-22 (degC))/10 (degC)) T = kelvinfkt( celsius ) rates(v) m = minf } BREAKPOINT { SOLVE states METHOD cnexp ica = (1e3) * pcabar * m * ghk(v, cai, cao, 2) } DERIVATIVE states { rates(v) m' = (minf-m)/taum } FUNCTION ghk( v (mV), ci (mM), co (mM), z ) (coulombs/cm3) { E = (1e-3) * v zeta = (z*F*E)/(R*T) : ci = ci + (monovalPerm) * (monovalConc) :Monovalent permeability if ( fabs(1-exp(-zeta)) < 1e-6 ) { ghk = (1e-6) * (z*F) * (ci - co*exp(-zeta)) * (1 + zeta/2) } else { ghk = (1e-6) * (z*zeta*F) * (ci - co*exp(-zeta)) / (1-exp(-zeta)) } } PROCEDURE rates( v (mV) ) { minf = 1 / ( 1 + exp(-(v+cv+vshift)/ck) ) taum = (1e3) * taumfkt(v)/qt/kt } FUNCTION taumfkt( v (mV) ) (s) { UNITSOFF taumfkt = (0.0002 + 0.0007031 * exp(-((v+30+vshift)/14)^2)) :Raman data : taumfkt = (0.00002 + 0.00065 * exp(-((v+vshift)/40)^2)) :data from Biophysical Journal 108,2015: 578-584 David Naranjo UNITSON } FUNCTION kelvinfkt( t (degC) ) (kelvin) { UNITSOFF kelvinfkt = 273.19 + t UNITSON }