TITLE Voltage-gated potassium channel from Kv3 subunits COMMENT Voltage-gated potassium channel with high threshold and fast activation/deactivation kinetics KINETIC SCHEME: Hodgkin-Huxley (n^4) n'= alpha * (1-n) - betha * n g(v) = gbar * n^4 * ( v-ek ) The rate constants of activation (alpha) and deactivation (beta) were approximated by: alpha(v) = ca * exp(-(v+cva)/cka) beta(v) = cb * exp(-(v+cvb)/ckb) Parameters can, cvan, ckan, cbn, cvbn, ckbn are given in the CONSTANT block. Values derive from least-square fits to experimental data of G/Gmax(v) and taun(v) in Martina et al. J Neurophysiol 97:563-571, 2007 Model includes a calculation of Kv gating current Reference: Akemann et al., Biophys. J. (2009) 96: 3959-3976 Notice that there is another set of data related with Kv3 by McKay and Turner European Journal of Neuroscience, Vol. 20, pp. 729–739, 2004 in that paper, the activation threshold of Kv3 is much lower. Laboratory for Neuronal Circuit Dynamics RIKEN Brain Science Institute, Wako City, Japan http://www.neurodynamics.brain.riken.jp Date of Implementation: April 2007 Contact: akemann@brain.riken.jp ENDCOMMENT NEURON { SUFFIX Kv3 USEION k READ ek WRITE ik RANGE gbar, g, ik,vshift GLOBAL ninf, tau : THREADSAFE } UNITS { (mV) = (millivolt) (mA) = (milliamp) (nA) = (nanoamp) (pA) = (picoamp) (S) = (siemens) (mS) = (millisiemens) (nS) = (nanosiemens) (pS) = (picosiemens) (um) = (micron) (molar) = (1/liter) (mM) = (millimolar) } CONSTANT { e0 = 1.60217646e-19 (coulombs) q10 = 2.7 ca = 0.22 (1/ms) cva = 16 (mV) cka = -26.5 (mV) cb = 0.22 (1/ms) cvb = 16 (mV) ckb = 26.5 (mV) zn = 1.9196 (1) : valence of n-gate } PARAMETER { vshift = 0 gbar = 0.005 (S/cm2) <0,1e9> } ASSIGNED { celsius (degC) v (mV) ik (mA/cm2) ek (mV) g (S/cm2) qt (1) ninf (1) tau (ms) alpha (1/ms) beta (1/ms) } STATE { n } INITIAL { qt = q10^((celsius-22 (degC))/10 (degC)) rateConst(v) n = ninf } BREAKPOINT { SOLVE state METHOD cnexp g = gbar * n^4 ik = g * (v - ek) } DERIVATIVE state { rateConst(v) n' = alpha * (1-n) - beta * n } PROCEDURE rateConst(v (mV)) { alpha = qt * alphaFkt(v) beta = qt * betaFkt(v) ninf = alpha / (alpha + beta) tau = 1 / (alpha + beta) } FUNCTION alphaFkt(v (mV)) (1/ms) { alphaFkt = ca * exp(-(v+cva+vshift)/cka) } FUNCTION betaFkt(v (mV)) (1/ms) { betaFkt = cb * exp(-(v+cvb+vshift)/ckb) }