: nap.mod is a persistent Na+ current from : Baker 2005, parameter assignments and formula's from page 854 NEURON { SUFFIX nap USEION na READ ena WRITE ina RANGE gbar,ina : THREADSAFE } UNITS { (S) = (siemens) (mV) = (millivolts) (mA) = (milliamp) } CONSTANT { q10 =2.7 } PARAMETER { gbar = 2.2630e-04 :3.7(nS)/1635(um^2) : ena= 65 (mV) A_amp = 17.235 (/ms) : A for alpha m persis B_amp = 27.58 (mV) C_amp = -11.47 (mV) A_bmp = 17.235 (/ms) : A for beta m persis B_bmp = 86.2 (mV) C_bmp = 19.8 (mV) } ASSIGNED { v (mV) : NEURON provides this i (mA/cm2) g (S/cm2) tau_m (ms) minf hinf ena ina qt } STATE { m h } BREAKPOINT { SOLVE states METHOD cnexp g = gbar * m^3 ina = g * (v-ena) } INITIAL { qt = q10^((celsius-22 (degC))/10 (degC)) : assume that equilibrium has been reached m = alpham(v)/(alpham(v)+betam(v)) } DERIVATIVE states { rates(v) m' = (minf - m)/tau_m } FUNCTION alpham(Vm (mV)) (/ms) { alpham=A_amp/(1+exp((Vm+B_amp)/C_amp)) } FUNCTION betam(Vm (mV)) (/ms) { betam=A_bmp/(1+exp((Vm+B_bmp)/C_bmp)) } FUNCTION rates(Vm (mV)) (/ms) { tau_m = 1.0 / (alpham(Vm) + betam(Vm))/qt minf = 1.0/(1+exp(-(Vm+66)/5)) }