COMMENT synaptic current with exponential rise and decay conductance defined by i = g * (v - e) i(nanoamps), g(micromhos); where g = 0 for t < onset and g=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1))) for t > onset ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { THREADSAFE POINT_PROCESS nmda RANGE onset, tau0, tau1, gmax, e, i, g NONSPECIFIC_CURRENT i } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (umho) = (micromho) } PARAMETER { onset=2 (ms) tau0=3 (ms) tau1=90 (ms) gmax=.001 (umho) e=5 (mV) v (mV) nmg = 0.3 (1) : eta*[Mg]o for eta = 0.25 (/mM) and [Mg]o = 1 mM : 0.33 used in Polsky's glutamate.mod : Zador et al. 1990 assumed eta = 0.33 (/mM) gamma = 0.08 (/mV) : .08 used in Polsky's glutamate.mod : Zador et al. 1990 used 0.06 (/mV) } ASSIGNED { i (nA) g (umho) } LOCAL a[2] LOCAL tpeak LOCAL adjust LOCAL amp BREAKPOINT { g = cond(t) i = g*(v - e) } FUNCTION cond(x(ms))(umho) { tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1) adjust=1/((1-exp(-tpeak/tau0))-(1-exp(-tpeak/tau1))) amp=adjust*gmax if (x < onset) { cond = 0 }else{ a[0]=1-exp(-(x-onset)/tau0) a[1]=1-exp(-(x-onset)/tau1) :cond = amp*(a[0]-a[1]) cond = (amp*(a[0]-a[1])/(1+nmg*exp(-gamma*(v)))) } }