: Calcium ion accumulation with endogenous buffers, DCM and pump COMMENT The basic code of Example 9.8 and Example 9.9 from NEURON book was adapted as: 1) Extended using parameters from Schmidt et al. 2003. 2) Pump rate was tuned according to data from Maeda et al. 1999 3) DCM was introduced and tuned to approximate the effect of radial diffusion Reference: Anwar H, Hong S, De Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cell. Cerebellum* *Article available as Open Access PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20981513 Written by Haroon Anwar, Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 2010. Contact: Haroon Anwar (anwar@oist.jp) ENDCOMMENT NEURON { SUFFIX cdp5StCmod USEION ca READ cao, cai, ica WRITE cai USEION nrvc READ nrvci VALENCE 1 RANGE ica_pmp RANGE Nannuli, Buffnull2, rf3, rf4, vrat RANGE CAM0, CAM1C, CAM2C, CAM1N2C, CAM1N, CAM2N, CAM2N1C, CAM1C1N, CAM4, icazz RANGE TotalPump } UNITS { (mol) = (1) (molar) = (1/liter) (mM) = (millimolar) (um) = (micron) (mA) = (milliamp) FARADAY = (faraday) (10000 coulomb) PI = (pi) (1) } PARAMETER { Nannuli = 10.9495 (1) celsius (degC) cainull = 45e-6 (mM) mginull =.59 (mM) : values for a buffer compensating the diffusion Buffnull1 = 0 (mM) rf1 = 0.0134329 (/ms mM) rf2 = 0.0397469 (/ms) Buffnull2 = 60.9091 (mM) rf3 = 0.1435 (/ms mM) rf4 = 0.0014 (/ms) : values for benzothiazole coumarin (BTC) BTCnull = 0 (mM) b1 = 5.33 (/ms mM) b2 = 0.08 (/ms) : values for caged compound DMNPE-4 DMNPEnull = 0 (mM) c1 = 5.63 (/ms mM) c2 = 0.107e-3 (/ms) : values for Calbindin (2 high and 2 low affinity binding sites) :CBnull= .16 (mM) :nf1 =43.5 (/ms mM) :nf2 =3.58e-2 (/ms) :ns1 =5.5 (/ms mM) :ns2 =0.26e-2 (/ms) : values for Parvalbumin PVnull = .08 (mM) m1 = 1.07e2 (/ms mM) m2 = 9.5e-4 (/ms) p1 = 0.8 (/ms mM) p2 = 2.5e-2 (/ms) : Calmodulin concentration CAM_start = 0.03 (mM) :Pepke 2010 : Calmodulin Kinetic parameters. The values are the mean between max and min. :C-lobe Kd1C = 0.00965 (mM) : Kd - Equilibrium binding of 1st Ca2+ to CaM C-terminus K1Coff = 0.04 (/ms) : From 0C to 1C with X ions on N-lobe K1Con = 5.4 (/mM ms) : From 1C to 0C with X ions on N-lobe Kd2C = 0.00105 (mM) : Kd - Equilibrium binding of 2nd Ca2+ to CaM C-terminus K2Coff = 0.00925 (/ms) : From 1C to 2C with X ions on N-lobe K2Con = 15 (/mM ms) : From 2C to 1C with X ions on N-lobe :N-lobe Kd1N = 0.0275 (uM) : Kd - Equilibrium binding of 1st Ca2+ to CaM N-terminus K1Noff = 2.5 (/ms) : From 0N to 1N with X ions on C-lobe K1Non = 142.5 (/mM ms) : From 1N to 0N with X ions on C-lobe Kd2N = 0.00615 (mM) : Kd - Equilibrium binding of 2nd Ca2+ to CaM N-terminus K2Noff = 0.75 (/ms) : From 1N to 2N with X ions on C-lobe K2Non = 175 (/mM ms) : From 2N to 1N with X ions on C-lobe kpmp1 = 3e-3 (/mM-ms) kpmp2 = 1.75e-5 (/ms) kpmp3 = 7.255e-5 (/ms) TotalPump = 1e-9 (mol/cm2) nrvci (nA) } ASSIGNED { diam (um) ica (mA/cm2) ica_pmp (mA/cm2) parea (um) : pump area per unit length parea2 (um) cai (mM) mgi (mM) vrat (1) icazz (nA) } CONSTANT { cao = 2 (mM) } STATE { : ca[0] is equivalent to cai : ca[] are very small, so specify absolute tolerance : let it be ~1.5 - 2 orders of magnitude smaller than baseline level ca (mM) <1e-3> mg (mM) <1e-6> Buff1 (mM) Buff1_ca (mM) Buff2 (mM) Buff2_ca (mM) BTC (mM) BTC_ca (mM) DMNPE (mM) DMNPE_ca (mM) :CB (mM) :CB_f_ca (mM) :CB_ca_s (mM) :CB_ca_ca (mM) PV (mM) PV_ca (mM) PV_mg (mM) :State for the Calmodulin CAM0 (mM) :C-lobe mainly CAM1C (mM) CAM2C (mM) CAM1N2C (mM) :N-Lobe Mainly CAM1N (mM) CAM2N (mM) CAM2N1C (mM) :One ion on C-lobe and one on N-lobe CAM1C1N (mM) :CaM complete CAM4 (mM) pump (mol/cm2) <1e-15> pumpca (mol/cm2) <1e-15> } BREAKPOINT { SOLVE state METHOD sparse } LOCAL factors_done INITIAL { factors() ca = cainull mg = mginull Buff1 = ssBuff1() Buff1_ca = ssBuff1ca() Buff2 = ssBuff2() Buff2_ca = ssBuff2ca() BTC = ssBTC() BTC_ca = ssBTCca() DMNPE = ssDMNPE() DMNPE_ca = ssDMNPEca() :CB = ssCB( kdf(), kds()) :CB_f_ca = ssCBfast( kdf(), kds()) :CB_ca_s = ssCBslow( kdf(), kds()) :CB_ca_ca = ssCBca( kdf(), kds()) PV = ssPV( kdc(), kdm()) PV_ca = ssPVca(kdc(), kdm()) PV_mg = ssPVmg(kdc(), kdm()) :Calmodulin CAM0 = CAM_start CAM1C = 0 CAM2C = 0 CAM1N2C = 0 CAM1N = 0 CAM2N = 0 CAM2N1C = 0 CAM1C1N = 0 CAM4 = 0 parea = PI*diam parea2 = PI*(diam-0.2) ica = 0 ica_pmp = 0 : ica_pmp_last = 0 pump = TotalPump pumpca = 0 cai = ca } PROCEDURE factors() { LOCAL r, dr2 r = 1/2 : starts at edge (half diam) dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus, vrat = PI*(r-dr2/2)*2*dr2 : interior half r = r - dr2 } LOCAL dsq, dsqvol : can't define local variable in KINETIC block : or use in COMPARTMENT statement KINETIC state { COMPARTMENT diam*diam*vrat {ca mg Buff1 Buff1_ca Buff2 Buff2_ca BTC BTC_ca DMNPE DMNPE_ca PV PV_ca PV_mg} COMPARTMENT (1e10)*parea {pump pumpca} :pump ~ ca + pump <-> pumpca (kpmp1*parea*(1e10), kpmp2*parea*(1e10)) ~ pumpca <-> pump (kpmp3*parea*(1e10), 0) CONSERVE pump + pumpca = TotalPump * parea * (1e10) ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea : all currents except pump : ica is Ca efflux ~ ca << (-ica*PI*diam/(2*FARADAY)) :RADIAL DIFFUSION OF ca, mg and mobile buffers dsq = diam*diam dsqvol = dsq*vrat ~ ca + Buff1 <-> Buff1_ca (rf1*dsqvol, rf2*dsqvol) ~ ca + Buff2 <-> Buff2_ca (rf3*dsqvol, rf4*dsqvol) ~ ca + BTC <-> BTC_ca (b1*dsqvol, b2*dsqvol) ~ ca + DMNPE <-> DMNPE_ca (c1*dsqvol, c2*dsqvol) :Calbindin :~ ca + CB <-> CB_ca_s (nf1*dsqvol, nf2*dsqvol) :~ ca + CB <-> CB_f_ca (ns1*dsqvol, ns2*dsqvol) :~ ca + CB_f_ca <-> CB_ca_ca (nf1*dsqvol, nf2*dsqvol) :~ ca + CB_ca_s <-> CB_ca_ca (ns1*dsqvol, ns2*dsqvol) :Paravalbumin ~ ca + PV <-> PV_ca (m1*dsqvol, m2*dsqvol) ~ mg + PV <-> PV_mg (p1*dsqvol, p2*dsqvol) :Calmodulin :C-lobe ~ ca + CAM0 <-> CAM1C (K1Con*dsqvol, K1Coff*dsqvol) ~ ca + CAM1C <-> CAM2C (K2Con*dsqvol, K2Coff*dsqvol) ~ ca + CAM2C <-> CAM1N2C (K1Non*dsqvol, K1Noff*dsqvol) ~ ca + CAM1N2C <-> CAM4 (K2Non*dsqvol, K2Noff*dsqvol) :N-lobe ~ ca + CAM0 <-> CAM1N (K1Non*dsqvol, K1Noff*dsqvol) ~ ca + CAM1N <-> CAM2N (K2Non*dsqvol, K2Noff*dsqvol) ~ ca + CAM2N <-> CAM2N1C (K1Con*dsqvol, K1Coff*dsqvol) ~ ca + CAM2N1C <-> CAM4 (K2Con*dsqvol, K2Coff*dsqvol) :Mixed C and N lobes ~ ca + CAM1C <-> CAM1C1N (K1Non*dsqvol, K1Noff*dsqvol) ~ ca + CAM1N <-> CAM1C1N (K1Con*dsqvol, K1Coff*dsqvol) ~ ca + CAM1C1N <-> CAM1N2C (K2Con*dsqvol, K2Coff*dsqvol) ~ ca + CAM1C1N <-> CAM2N1C (K2Non*dsqvol, K2Noff*dsqvol) cai = ca mgi = mg icazz = nrvci } FUNCTION ssBuff1() (mM) { ssBuff1 = Buffnull1/(1+((rf1/rf2)*cainull)) } FUNCTION ssBuff1ca() (mM) { ssBuff1ca = Buffnull1/(1+(rf2/(rf1*cainull))) } FUNCTION ssBuff2() (mM) { ssBuff2 = Buffnull2/(1+((rf3/rf4)*cainull)) } FUNCTION ssBuff2ca() (mM) { ssBuff2ca = Buffnull2/(1+(rf4/(rf3*cainull))) } FUNCTION ssBTC() (mM) { ssBTC = BTCnull/(1+((b1/b2)*cainull)) } FUNCTION ssBTCca() (mM) { ssBTCca = BTCnull/(1+(b2/(b1*cainull))) } FUNCTION ssDMNPE() (mM) { ssDMNPE = DMNPEnull/(1+((c1/c2)*cainull)) } FUNCTION ssDMNPEca() (mM) { ssDMNPEca = DMNPEnull/(1+(c2/(c1*cainull))) } :FUNCTION ssCB( kdf(), kds()) (mM) { : ssCB = CBnull/(1+kdf()+kds()+(kdf()*kds())) :} :FUNCTION ssCBfast( kdf(), kds()) (mM) { : ssCBfast = (CBnull*kds())/(1+kdf()+kds()+(kdf()*kds())) :} :FUNCTION ssCBslow( kdf(), kds()) (mM) { : ssCBslow = (CBnull*kdf())/(1+kdf()+kds()+(kdf()*kds())) :} :FUNCTION ssCBca(kdf(), kds()) (mM) { : ssCBca = (CBnull*kdf()*kds())/(1+kdf()+kds()+(kdf()*kds())) :} :FUNCTION kdf() (1) { : kdf = (cainull*nf1)/nf2 :} :FUNCTION kds() (1) { : kds = (cainull*ns1)/ns2 :} FUNCTION kdc() (1) { kdc = (cainull*m1)/m2 } FUNCTION kdm() (1) { kdm = (mginull*p1)/p2 } FUNCTION ssPV( kdc(), kdm()) (mM) { ssPV = PVnull/(1+kdc()+kdm()) } FUNCTION ssPVca( kdc(), kdm()) (mM) { ssPVca = (PVnull*kdc())/(1+kdc()+kdm()) } FUNCTION ssPVmg( kdc(), kdm()) (mM) { ssPVmg = (PVnull*kdm())/(1+kdc()+kdm()) }