: model from Evans et al 2013, transferred from GENESIS to NEURON by Beining et al (2016), "A novel comprehensive and consistent electrophysiologcal model of dentate granule cells" : also added Calcium dependent inactivation NEURON { SUFFIX Cav13 USEION ca READ cai, eca WRITE ica :,cai,cao...., cai, cao USEION lca WRITE ilca VALENCE 0 RANGE gbar, g GLOBAL kf, h2Tau, VDI } UNITS { (molar) = (1/liter) (mM) = (millimolar) (mV) = (millivolt) (mA) = (milliamp) (S) = (siemens) (um) = (micrometer) } ASSIGNED { ilca (mA/cm2) : instantaneous calcium current of l-type calcium channel v (mV) ica (mA/cm2) g (S/cm2) eca (mV) diam (um) cai (mM) mInf (1) hInf (1) h2Inf (1) mTau (ms) } PARAMETER { hTau = 44.3 (ms) h2Tau = 0.5 (ms) gbar = 0 (S/cm2) vshift = 0 (mV) :parameters for calcium-dep inactivation (CDI) :f= (0.001/(0.001+[Ca]))Poirazi CA1 2003 :f= (0.0005/(0.0005+[Ca])) Rhodes and Llinas 2001 Cort Pyr kf = 0.0005 (mM) : factor in inactivation, the higher the less sensitive. others uses 0.0002.. standen and stanfield use 0.001mM in original paper VDI = 1 } STATE {m h h2} :a b :cai (mM) cao (mM) INITIAL { rates() m = mInf h = hInf h2 = h2Inf } BREAKPOINT { rates() SOLVE state METHOD cnexp g = gbar*m*h*h2 : h2 calcium dependent inactivation is taken from santhakumar 05.. tjos assumes instantaneous calcium inactivation ica = (g)*(v - eca) : ilca = ica } DERIVATIVE state { : exact when v held constant integrates over dt step m' = (mInf-m) / mTau h' = (hInf-h) / hTau h2' = (h2Inf-h2)/h2Tau } PROCEDURE rates(){ LOCAL mA,mB mA = (39800*( v + 67.24))/( exp ( (v + 67.24)/15.005) - 1.0) mB = 3500* exp(v/31.4) mTau = (1/(mA + mB)) mInf = 1.0/((exp ( (v - (-40.0))/(-5))) + 1.0) hInf = VDI/( (exp ( (v - (-37))/(5))) + 1.0) + (1-VDI) :h2 = caIn(cai) h2Inf = kf/(kf+cai) }