TITLE Large conductance Ca2+ activated K+ channel mslo COMMENT Parameters from Cox et al. (1987) J Gen Physiol 110:257-81 (patch 1). Current Model Reference: Anwar H, Hong S, De Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cell. Cerebellum* *Article available as Open Access PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20981513 Written by Sungho Hong, Okinawa Institute of Science and Technology, March 2009. Contact: Sungho Hong (shhong@oist.jp) Suffix from mslo to Kca1_1 ENDCOMMENT NEURON { SUFFIX Kca1_1 USEION k READ ek WRITE ik USEION ca READ cai RANGE g, gbar, ik } UNITS { (mV) = (millivolt) (S) = (siemens) (molar) = (1/liter) (mM) = (millimolar) FARADAY = (faraday) (kilocoulombs) R = (k-mole) (joule/degC) } CONSTANT { q10 = 3 } PARAMETER { gbar = 0.01 (S/cm2) Qo = 0.73 Qc = -0.67 k1 = 1.0e3 (/mM) onoffrate = 1 (/ms) L0 = 1806 Kc = 11.0e-3 (mM) Ko = 1.1e-3 (mM) pf0 = 2.39e-3 (/ms) pf1 = 7.0e-3 (/ms) pf2 = 40e-3 (/ms) pf3 = 295e-3 (/ms) pf4 = 557e-3 (/ms) pb0 = 3936e-3 (/ms) pb1 = 1152e-3 (/ms) pb2 = 659e-3 (/ms) pb3 = 486e-3 (/ms) pb4 = 92e-3 (/ms) } ASSIGNED { : rates c01 (/ms) c12 (/ms) c23 (/ms) c34 (/ms) o01 (/ms) o12 (/ms) o23 (/ms) o34 (/ms) f0 (/ms) f1 (/ms) f2 (/ms) f3 (/ms) f4 (/ms) c10 (/ms) c21 (/ms) c32 (/ms) c43 (/ms) o10 (/ms) o21 (/ms) o32 (/ms) o43 (/ms) b0 (/ms) b1 (/ms) b2 (/ms) b3 (/ms) b4 (/ms) v (mV) cai (mM) ek (mV) ik (milliamp/cm2) g (S/cm2) celsius (degC) } STATE { C0 FROM 0 TO 1 C1 FROM 0 TO 1 C2 FROM 0 TO 1 C3 FROM 0 TO 1 C4 FROM 0 TO 1 O0 FROM 0 TO 1 O1 FROM 0 TO 1 O2 FROM 0 TO 1 O3 FROM 0 TO 1 O4 FROM 0 TO 1 } BREAKPOINT { SOLVE activation METHOD sparse g = gbar * (O0 + O1 + O2 + O3 + O4) ik = g * (v - ek) } INITIAL { : rates(v, cai) : SOLVE seqinitial SOLVE activation STEADYSTATE sparse } KINETIC activation { rates(v, cai) ~ C0 <-> C1 (c01,c10) ~ C1 <-> C2 (c12,c21) ~ C2 <-> C3 (c23,c32) ~ C3 <-> C4 (c34,c43) ~ O0 <-> O1 (o01,o10) ~ O1 <-> O2 (o12,o21) ~ O2 <-> O3 (o23,o32) ~ O3 <-> O4 (o34,o43) ~ C0 <-> O0 (f0 , b0) ~ C1 <-> O1 (f1 , b1) ~ C2 <-> O2 (f2 , b2) ~ C3 <-> O3 (f3 , b3) ~ C4 <-> O4 (f4 , b4) CONSERVE C0 + C1 + C2 + C3 + C4 + O0 + O1 + O2 + O3 + O4 = 1 } PROCEDURE rates(v(mV), ca (mM)) { LOCAL qt, alpha, beta qt = q10^((celsius-23 (degC))/10 (degC)) c01 = 4*ca*k1*onoffrate*qt c12 = 3*ca*k1*onoffrate*qt c23 = 2*ca*k1*onoffrate*qt c34 = 1*ca*k1*onoffrate*qt o01 = 4*ca*k1*onoffrate*qt o12 = 3*ca*k1*onoffrate*qt o23 = 2*ca*k1*onoffrate*qt o34 = 1*ca*k1*onoffrate*qt c10 = 1*Kc*k1*onoffrate*qt c21 = 2*Kc*k1*onoffrate*qt c32 = 3*Kc*k1*onoffrate*qt c43 = 4*Kc*k1*onoffrate*qt o10 = 1*Ko*k1*onoffrate*qt o21 = 2*Ko*k1*onoffrate*qt o32 = 3*Ko*k1*onoffrate*qt o43 = 4*Ko*k1*onoffrate*qt alpha = exp(Qo*FARADAY*v/R/(273.15 + celsius)) beta = exp(Qc*FARADAY*v/R/(273.15 + celsius)) f0 = pf0*alpha*qt f1 = pf1*alpha*qt f2 = pf2*alpha*qt f3 = pf3*alpha*qt f4 = pf4*alpha*qt b0 = pb0*beta*qt b1 = pb1*beta*qt b2 = pb2*beta*qt b3 = pb3*beta*qt b4 = pb4*beta*qt }