//-------------------------------------------------------------------- // Simulation of Phasic Activity // Synapses Distributet in soma, dasal and perisomatc dendrites // her without run, just to place synapses // used with an increased nseg of 101 (run() reasonalble only for nseg <11) //--------------------------------------------------------------------- // ------------Definition of Parameters ------------------------------- // -------------------------------------------------------------------- // Determining Parameters GABA --------------------------- G_GABA = 0.000169 // synaptic weight according to miniature events DECAY_GABA = 37 P_GABA = 0.18 ndend=107 ngabasyn = 107 gninputs = 2 // seed Values for random generator seed_GABA = 1 // seed for random function // ---------Definition of objects ------------------------------------- // -------------------------------------------------------------------- // Objects for Synapses --------------------------------------------------------- objref gabasyn[ngabasyn] // Definition of synapse objects // random function for localization of synapses objref rand_gaba_loc // random function for localization of synapses in which dendrite objref rand_gaba_dend // random function for synapses parameters objref rand_gaba_t // definition of Vectors for Gaba-Stimulation (t_vec = timestamps t_vecr = sorted timestamps, g_vec = rel conductance) objref gabastim[ngabasyn], gaba_t_vec[ngabasyn], gaba_t_vecr[ngabasyn], synpulsegaba[ngabasyn] // Start of Input generation ------------------------------------------- // Initialize Random Functions ----------- rand_gaba_dend = new Random(seed_GABA+4) rand_gaba_t = new Random(seed_GABA+6) //Define properties of random Function rand_gaba_t.uniform(0, 1010101) // generate Vectors --- (gniputs, aninputs defines number of inputs per synapse) ------ for i = 0, ngabasyn-1 { gaba_t_vec[i] = new Vector(gninputs) gaba_t_vecr[i] = new Vector(gninputs) } printf("\n Pos: ") // Distribute GABA synapses ----------------------------------------------------------- // Distribute in soma and perisomatic dendrites for k=0, 8 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) dend[0]{ gabasyn[k] = new gaba(0.2) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=9, 17 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) dend[3]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=18, 26 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) dend[8]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=27, 35 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) dend[8]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=36, 44 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) dend[10]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=45, 53 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) apic[10]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=54, 62 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) apic[11]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=63, 71 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) apic[12]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=72, 80 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) apic[13]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=81, 89 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) apic[14]{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } for k=90, ndend-1 { pos = rand_gaba_dend.uniform (0.0001, 0.999) printf("%g = %g,",k, pos) soma{ gabasyn[k] = new gaba(pos) gabasyn[k].tau1 = 0.1 gabasyn[k].tau2 = DECAY_GABA gabasyn[k].P = P_GABA } } printf("\n \n")