COMMENT Chloride accumulation and diffusion with decay (time constant tau) to resting level cli0. The decay approximates a reversible chloride pump with first order kinetics. To eliminate the chloride pump, just use this hoc statement To make the time constant effectively "infinite". tau and the resting level are both RANGE variables Diffusion model is modified from Ca diffusion model in Hines & Carnevale: Expanding NEURON with NMODL, Neural Computation 12: 839-851, 2000 (Example 8) ENDCOMMENT NEURON { SUFFIX cldif_CA3_NKCC1_HCO3 USEION cl READ icl WRITE cli VALENCE -1 : Ion cl, use cl current to calculate cl internal concentration USEION hco3 READ ihco3 WRITE hco3i VALENCE -1: Ion HCO3, use HCO3 internal concentration to calculate the external concentration GLOBAL vrat :vrat must be GLOBAL, so it does not change with position. vrat = volumes of concentric shells RANGE tau, cli0, clo0, hco3i0, hco3o0, egaba, delta_egaba, init_egaba, ehco3_help, ecl_help : all of these change with position } DEFINE Nannuli 4 UNITS { (molar) = (1/liter) (mM) = (millimolar) (um) = (micron) (mA) = (milliamp) (mV) = (millivolt) FARADAY = (faraday) (10000 coulomb) PI = (pi) (1) F = (faraday) (coulombs) R = (k-mole) (joule/degC) } PARAMETER { DCl = 2 (um2/ms) : Kuner & Augustine, Neuron 27: 447 : diffusion coefficient of cl DHCO3 = 1.18 (um2/ms) : Hashitani & Kigoshi, Bulletin of the Chemical Society of Japan, 38:1395-1396 tau_NKCC1 = 174000 (ms) : 174 s From Kolbaev, Lombardi kilb (in Prep) - kinetics after Cl decline tau_passive = 321000 (ms) : 321 s From Kolbaev, Lombardi Kilb (in prep) - kinetics after bumetanid washin tau_hco3 = 1000 (ms) : tau for Bicarbonate, just an arbitrary value cli0 = 50 (mM) : basal Cl internal concentration cli_Start = 10 (mM) :Cl- concentration at start clo0 = 133.5 (mM) : basal Cl external concentration hco3i0 = 16 (mM) : basal HCO3 internal concentration hco3o0 = 26 (mM) : basal HCO3 external concentration hco3i_Start = 16 (mM) : Cl- concentration at start celsius = 31 (degC) } ASSIGNED { diam (um) icl (mA/cm2) : Cl current ihco3 (mA/cm2) : HCO3- current current cli (mM) : Cl internal concentration hco3i (mM) : HCO3 internal concentration hco3o (mM) : HCO3 external concentration vrat[Nannuli] : numeric value of vrat[i] equals the volume : of annulus i of a 1um diameter cylinder : multiply by diam^2 to get volume per um length ehco3_help (mV) ecl_help (mV) ActPump :Binary value that defines if active inward pumping of passive outward diffusion } STATE { : cl[0] is equivalent to cli : cl[] are very small, so specify absolute tolerance cl[Nannuli] (mM) <1e-10> hco3[Nannuli] (mM) <1e-10> } BREAKPOINT { SOLVE state METHOD sparse ecl_help = log(cli/clo0)*(1000)*(celsius + 273.15)*R/F ehco3_help = log(hco3i/hco3o0)*(1000)*(celsius + 273.15)*R/F } LOCAL factors_done INITIAL { if (factors_done == 0) { : flag becomes 1 in the first segment factors_done = 1 : all subsequent segments will have factors() : vrat = 0 unless vrat is GLOBAL. We make sure that vrat is applied to the shell volumes } cli = cli_Start hco3i = hco3i0 hco3o = hco3o0 FROM i=0 TO Nannuli-1 { : So that at the begining the Cl [] is the same in all shells ( steady state) cl[i] = cli } FROM i=0 TO Nannuli-1 { : So that at the begining the HCO3 [] is the same in all shells ( steady state) hco3[i] = hco3i } ehco3_help = log(hco3i/hco3o)*(1000)*(celsius + 273.15)*R/F : Nerst eq for HCO3 at time 0 ecl_help = log(cli/clo0)*(1000)*(celsius + 273.15)*R/F } LOCAL frat[Nannuli] : scales the rate constants for model geometry PROCEDURE factors() { LOCAL r, dr2 r = 1/2 : starts at edge (half diam), diam = 1, length = 1 dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus, : half thickness of all other annuli vrat[0] = 0 frat[0] = 2*r : = diam FROM i=0 TO Nannuli-2 { vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2 : interior half r = r - dr2 frat[i+1] = 2*PI*r/(2*dr2) : outer radius of annulus Ai+1/delta_r=2PI*r*1/delta_r : div by distance between centers r = r - dr2 vrat[i+1] = PI*(r+dr2/2)*2*dr2 : outer half of annulus } } KINETIC state { if (cli0 >= cl[0]) { : Under this condition the NKCC1 mediates active Cl- uptake ( positive inward flux) ActPump = 1 } else { : Under this condition NKCC1 should be not functional ( negative inward flux) ActPump = 0 } COMPARTMENT i, diam*diam*vrat[i] {cl} LONGITUDINAL_DIFFUSION i, DCl*diam*diam*vrat[i] {cl} ~ cl[0] << ((icl*PI*diam/FARADAY) + ActPump*(diam*diam*vrat[0]*(cli0 - cl[0])/tau_NKCC1) + (diam*diam*vrat[0]*(cli0 - cl[0])/tau_passive)) : icl is Cl- influx FROM i=0 TO Nannuli-2 { ~ cl[i] <-> cl[i+1] (DCl*frat[i+1], DCl*frat[i+1]) } cli = cl[0] COMPARTMENT i, diam*diam*vrat[i] {hco3} LONGITUDINAL_DIFFUSION i, DHCO3*diam*diam*vrat[i] {hco3} ~ hco3[0] << ((ihco3*PI*diam/FARADAY) + (diam*diam*vrat[0]*(hco3i0 - hco3[0])/tau_hco3)) : ihco3 is HCO3- influx FROM i=0 TO Nannuli-2 { ~ hco3[i] <-> hco3[i+1] (DHCO3*frat[i+1], DHCO3*frat[i+1]) } hco3i = hco3[0] }