"""Simulation of spreading depression""" # from mpi4py import MPI from numpy import random from neuron import h, rxd #h.nrnmpi_init() from neuron.rxd import v from neuron.rxd.rxdmath import exp, log, tanh from neuron.units import sec, mM import matplotlib matplotlib.use('Agg') from matplotlib import pyplot, colors, colorbar import math from math import pi from matplotlib import pyplot import numpy import os import sys import pickle import json import itertools from scipy.signal import find_peaks # when using multiple processes get the relevant id and number of hosts pc = h.ParallelContext() pcid = pc.id() nhost = pc.nhost() # pcid = 0 # nhost = 20 pc.timeout(0) # load sim configuration with open(sys.argv[-1],'rb') as fileObj: args = json.load(fileObj) # set the save directory outdir = os.path.abspath(args['dir']) if pcid == 0 and not os.path.exists(outdir): try: os.makedirs(outdir) os.makedirs(outdir+'/gifFigs/') except: print("Unable to create the directory %r for the data and figures" % outdir) os._exit(1) # save sim state functions def saveRxd(): for sp in rxd.species._all_species: s = sp() numpy.save(os.path.join(outdir, s.name + '_concentrations_' + str(pcid) + '.npy'), s.nodes.concentration) def runSS(): svst = h.SaveState() svst.save() f = h.File(os.path.join(outdir,'save_test_' + str(pcid) + '.dat')) svst.fwrite(f) rxd.nthread(args['nthreads']) # set the number of rxd threads - original 4 rxd.options.enable.extracellular = True # enable extracellular rxd h.load_file('stdrun.hoc') h.celsius = 37 # h.dt = 0.025 h.dt = 0.1 # original above, going for longer runs e_charge = 1.60217662e-19 scale = 1e-14/e_charge gnabar = (30/1000) * scale # molecules/um2 ms mV gnabar_l = (0.0247/1000) * scale gkbar = (25/1000) * scale gkbar_l = (0.05/1000) * scale gclbar_l = (0.1/1000) * scale ukcc2 = 0.3 * mM/sec unkcc1 = 0.1 * mM/sec alpha = 5.3 epsilon_k_max = 0.25/sec epsilon_o2 = 0.17/sec vtau = 1/250.0 g_gliamax = 5 * mM/sec beta0 = 7.0 avo = 6.0221409*(10**23) # modified parameter p_max = args['p_max'] #8 #0.8 * mM/sec nao_initial = 144.0 nai_initial = 18.0 #22.5 # gnai_initial = 18.0 gki_initial = 80.0 #MODIFIED -- original 142.5, 7.8 --- ko_initial = 3.5 ki_initial = 140.0 #133.0 # clo_initial = 130 cli_initial = 6.0 #3.8 # if args['ox'] == 'primed': clo_initial = clo_initial / 2 cli_initial = cli_initial / 2 if args['varCl']: factor = args['varCl'] / clo_initial clo_initial = clo_initial * factor cli_initial = cli_initial * factor if args['ox'] == 'anoxic': oa_bath = 0.01 elif args['ox'] == 'orig' or args['ox'] == 'primed' or args['ox'] == 'mannitol': oa_bath = 0.1 else: oa_bath = 0.04 #args.bathO2/alpha if args['varO2']: oa_bath = args['varO2'] # oa_bath = 0.1 # original value from adam's code v_initial = -70 #-74.7 #-70 #sodium activation 'm' alpha_m = (0.32 * (v + 54.0))/(1.0 - exp(-(v + 54)/4.0)) beta_m = (0.28 * (v + 27.0))/(exp((v + 27.0)/5.0) - 1.0) alpha_m0 =(0.32 * (v_initial + 54.0))/(1.0 - math.exp(-(v_initial + 54)/4.0)) beta_m0 = (0.28 * (v_initial + 27.0))/(math.exp((v_initial + 27.0)/5.0) - 1.0) m_initial = alpha_m0/(beta_m0 + 1.0) #sodium inactivation 'h' alpha_h = 0.128 * exp(-(v + 50.0)/18.0) beta_h = 4.0/(1.0 + exp(-(v + 27.0)/5.0)) alpha_h0 = 0.128 * math.exp(-(v_initial + 50.0)/18.0) beta_h0 = 4.0/(1.0 + math.exp(-(v_initial + 27.0)/5.0)) h_initial = alpha_h0/(beta_h0 + 1.0) #potassium activation 'n' alpha_n = (0.032 * (v + 52.0))/(1.0 - exp(-(v + 52.0)/5.0)) beta_n = 0.5 * exp(-(v + 57.0)/40.0) alpha_n0 = (0.032 * (v_initial + 52.0))/(1.0 - math.exp(-(v_initial + 52.0)/5.0)) beta_n0 = 0.5 * math.exp(-(v_initial + 57.0)/40.0) n_initial = alpha_n0/(beta_n0 + 1.0) numpy.random.seed(args['randSeed']+pcid) # use a difference seed for each process # simulation parameters if args['size'] == 'small': Lx, Ly = 500.0, 500.0 elif args['size'] == 'mini': Lx, Ly = 200.0, 200.0 elif args['size'] == 'big': Lx, Ly = 2000.0, 2000.0 elif args['size'] == 'bigger': Lx, Ly = 3000.0, 3000.0 else: Lx, Ly = 1000.0, 1000.0#170 # value fr fovea. 1000 #250 # 750, 750, 375 # size of the extracellular space mu m^3 - original 500, 500, 250 Lz = args['Lz'] if args['size'] == 'cube': Lx, Ly, Lz = 500.0, 500.0, 500.0 Kceil = 15.0 # threshold used to determine wave speed Vtissue = Lx*Ly*Lz # cell numbers Ncell = int(args['density']*(Lx*Ly*Lz*1e-9)) # default 90k / mm^3 Nrec = args['nrec'] if args['density'] == 90000: rs = ((args['alphaNrn']*Vtissue)/(2*numpy.pi*Ncell)) ** (1/3) # defaults to 7.52: appropriate radius for neuronal volume fraction of 0.24 given cylinders whose height is the diameter else: rs = 7.52 # compute appropriate radius for given surface area to volume ratio if args['sa2v']: somaR = (args['sa2v'] * rs**3 / 2.0) ** (1/2) else: somaR = rs #10 # larger than in the paper - original 15. # ECS params alpha0, alpha1, alpha2, alpha3, alpha4 = 0.07, 0.2, 0.12, 0.3, 0.32 # anoxic and normoxic volume fractions tort0, tort1, tort2, tort3 = 1.8, 1.6, 2.0, 1.4 # anoxic and normoxic tortuosities r0 = args['r0'] # radius for initial elevated K+ # allows for cmd line switching normox vs anox if args['ox'] == 'normoxic' or args['ox'] == 'orig': alpha0 = alpha1 # calls are made w/ initial anoxic vars tort0 = tort1 elif args['ox'] == 'brainstem': alpha0 = alpha3 tort0 = tort1 elif args['ox'] == 'primed': alpah0 = alpha2 tort0 = tort1 elif args['ox'] == 'mannitol': alpha0 = alpha4 tort0 = tort3 if args['alphaECS']: alpha0 = args['alphaECS'] if args['lambdaECS']: tort0 = args['lambdaECS'] soma_list = h.SectionList() dend_list = h.SectionList() class Neuron: """ A neuron with soma and dendrite with; fast and persistent sodium currents, potassium currents, passive leak and potassium leak and an accumulation mechanism. """ def __init__(self, x, y, z, rec=False): self.x = x self.y = y self.z = z self.soma = h.Section(name='soma', cell=self) # add 3D points to locate the neuron in the ECS self.soma.pt3dadd(x, y, z + somaR, 2.0*somaR) self.soma.pt3dadd(x, y, z - somaR, 2.0*somaR) if args['pas']: self.soma.insert('pas') self.soma(0.5).pas.e = args['pas'] self.soma(0.5).pas.g = args['gpas'] soma_list.append(self.soma) if rec: # record membrane potential (shown in figure 1C) self.somaV = h.Vector() self.somaV.record(self.soma(0.5)._ref_v) class NeuronD: """ A neuron with soma and dendrite with; fast and persistent sodium currents, potassium currents, passive leak and potassium leak and an accumulation mechanism. """ def __init__(self, x, y, z, height, rec=False): self.x = x self.y = y self.z = z self.soma = h.Section(name='soma', cell=self) # add 3D points to locate the neuron in the ECS self.soma.pt3dadd(x, y, z + somaR, 2.0*somaR) self.soma.pt3dadd(x, y, z - somaR, 2.0*somaR) self.dend = h.Section(name='dend', cell=self) self.dend.pt3dadd(x, y, z + somaR, 4) self.dend.pt3dadd(x, y, z + somaR + height, 4) self.dend.diam = 4 self.dend.L = height self.dend.connect(self.soma(1)) soma_list.append(self.soma) dend_list.append(self.dend) if rec: # record membrane potential (shown in figure 1C) self.somaV = h.Vector() self.somaV.record(self.soma(0.5)._ref_v) # Randomly distribute 1000 neurons which we record the membrane potential # every 50ms if args['dendL'] > 0: if pcid == 0: print("Neuron with dend") rec_neurons = [NeuronD( (numpy.random.random()*2.0 - 1.0) * (Lx/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Ly/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Lz/2.0 - somaR - args['dendL']), args['dendL'], 50) for i in range(0, int(Nrec/nhost))] all_neurons = [NeuronD( (numpy.random.random()*2.0 - 1.0) * (Lx/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Ly/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Lz/2.0 - somaR - args['dendL']), args['dendL']) for i in range(int(Nrec/nhost), int(Ncell/nhost))] else: if pcid == 0: print('point neuron') if args['uniformRec']: center_rec_neurons = [Neuron( (numpy.random.random()*2.0 - 1.0) * (Lx/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Ly/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Lz/2.0 - somaR), 50) for i in range(0, int(Nrec/nhost))] periph_rec_neurons = [] else: center_rec_neurons = [Neuron( (numpy.random.random()*2.0 - 1.0) * (Lx/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Ly/2.0 - somaR), 0, 50) for i in range(0, int(Nrec/2/nhost))] #(numpy.random.random()*2.0 - 1.0) * 0.5 periph_rec_neurons = [Neuron( (numpy.random.random()*2.0 - 1.0) * (Lx/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Ly/2.0 - somaR), numpy.random.choice((-1,1)) * (Lz/2.0 - somaR), 50) for i in range(0, int(Nrec/2/nhost))] # Randomly distribute the remaining neurons all_neurons = [Neuron( (numpy.random.random()*2.0 - 1.0) * (Lx/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Ly/2.0 - somaR), (numpy.random.random()*2.0 - 1.0) * (Lz/2.0 - somaR)) for i in range(int(Nrec/nhost), int(Ncell/nhost))] # Where? -- define the extracellular space if args['edemaCore'] or args['ischemEdemaCore']: # need args['ox'] == 'anoxic' def alphaecs(x, y, z) : if x**2 + y**2 + z**2 < r0**2: return alpha0 else: return min(alpha1, alpha0 + (alpha1-alpha0) *((x**2+y**2+z**2)**0.5-r0)/(Lx/2)) def tortecs(x, y, z) : if x**2 + y**2 + z**2 < r0**2: return tort0 else: return max(tort1, tort0 - (tort0-tort1) *((x**2+y**2+z**2)**0.5-r0)/(Lx/2)) ecs = rxd.Extracellular(-Lx/2.0, -Ly/2.0, -Lz/2.0, Lx/2.0, Ly/2.0, Lz/2.0, dx=25, volume_fraction=alphaecs, tortuosity=tortecs) # switched to ischemic else: ecs = rxd.Extracellular(-Lx/2.0, -Ly/2.0, -Lz/2.0, Lx/2.0, Ly/2.0, Lz/2.0, dx=25, volume_fraction=alpha0, tortuosity=tort0) # switched to ischemic ## separate ecs for o2 ecs_o2 = rxd.Extracellular(-Lx/2.0, -Ly/2.0, -Lz/2.0, Lx/2.0, Ly/2.0, Lz/2.0, dx=25, volume_fraction=1.0, tortuosity=1.0) if args['sa2v']: cyt_frac = rs**3 / somaR**3 cyt = rxd.Region(h.allsec(), name='cyt', nrn_region='i', geometry=rxd.FractionalVolume(cyt_frac, surface_fraction=1)) else: cyt = rxd.Region(h.allsec(), name='cyt', nrn_region='i') mem = rxd.Region(h.allsec(), name='mem', geometry=rxd.membrane()) # What? -- define the species def concentration(i, o): return lambda nd: i if isinstance(nd, rxd.node.Node1D) else o # if args['BC'] == 'invivo': k_bc = ko_initial na_bc = nao_initial cl_bc = clo_initial o2_bc = oa_bath # else: # k_bc = None # na_bc = None # cl_bc = None # o2_bc = None k = rxd.Species([cyt, mem, ecs], name='k', d=2.62, charge=1, initial=lambda nd: ki_initial if isinstance(nd, rxd.node.Node1D) else ( args['k0'] if nd.x3d**2 + nd.y3d**2 + nd.z3d**2 <= r0**2 else ko_initial), ecs_boundary_conditions=k_bc) na = rxd.Species([cyt, mem, ecs], name='na', d=1.78, charge=1, initial=concentration(nai_initial, nao_initial), ecs_boundary_conditions=na_bc) cl = rxd.Species([cyt, mem, ecs], name='cl', d=2.1, charge=-1, initial=concentration(cli_initial, clo_initial), ecs_boundary_conditions=cl_bc) # rescale mM/ms to molecules/um**2/ms volume = cyt.geometry.volumes1d(center_rec_neurons[0].soma)[0] area = cyt.geometry.surface_areas1d(center_rec_neurons[0].soma)[0] volume_scale = 1e-18 * avo * volume / area #extracellular oxygen concentration if args['ischemCore'] or args['ischemEdemaCore']: o2_extracellular = rxd.Species([ecs_o2], name='o2', d=3.3, initial = lambda nd: 0.01 if nd.x3d**2 + nd.y3d**2 + nd.z3d**2 <= r0**2 else 0.04, ecs_boundary_conditions=0.04) # changed for separate ecs for o2 else: o2_extracellular = rxd.Species([ecs_o2], name='o2', d=3.3, initial=oa_bath, ecs_boundary_conditions=o2_bc) # changed for separate ecs for o2 o2ecs = o2_extracellular[ecs_o2] o2switch = (1.0 + tanh(1e4*(o2ecs-5e-4)))/2.0 #volume ratio vol_ratio = rxd.State([cyt, ecs], name='volume', initial=1.0) vir = vol_ratio[cyt] # intracellular ratio of volume at time t to initial volume vor = vol_ratio[ecs] # extracellular ratio of volume at time t to initial volume # vor(t) == beta0*( 1.0 - vir(t) ) + 1.0) # but two states are needed to support the regions. # boundary conditions - as is like in vitro def bc(nd): if (abs(nd.x3d - ecs._xlo) < ecs._dx[0] or abs(nd.x3d - ecs._xhi) < ecs._dx[0] or abs(nd.y3d - ecs._ylo) < ecs._dx[1] or abs(nd.y3d - ecs._yhi) < ecs._dx[1] or abs(nd.z3d - ecs._zlo) < ecs._dx[2] or abs(nd.z3d - ecs._zhi) < ecs._dx[2]): return 1.0 return 0.0 # in vivo - only restrict in one z-direction, can diffuse out def bcvivo(nd): if abs(nd.z3d - ecs._zlo) >= ecs._dx[2]: return 0.0 return 1.0 # core conditions def core(nd): if nd.x3d**2 + nd.y3d**2 + nd.z3d**2 <= r0**2: return 1.0 return 0.0 def anticore(nd): if nd.x3d**2 + nd.y3d**2 + nd.z3d**2 <= r0**2: return 0.0 return 1.0 iscore = rxd.Parameter([ecs_o2, mem], name='iscore', value = lambda nd: core(nd)) notcore = rxd.Parameter([ecs, ecs_o2, mem], name='notcore', value = lambda nd: anticore(nd)) dump = rxd.Parameter([cyt, ecs, ecs_o2], name='dump') ecsbc = rxd.Parameter([ecs, ecs_o2], name='ecsbc', value = lambda nd: bc(nd)) ki, ko, nai, nao, cli, clo = k[cyt], k[ecs], na[cyt], na[ecs], cl[cyt], cl[ecs] #STATES------------------------------------------------------------------------- #gating variables (m, h, n) mgate = rxd.State([cyt, mem], name='mgate', initial=m_initial) hgate = rxd.State([cyt, mem], name='hgate', initial=h_initial) ngate = rxd.State([cyt, mem], name='ngate', initial=n_initial) #ALL EQUATIONS------------------------------------------------------------------ gna = gnabar*mgate**3*hgate gk = gkbar*ngate**4 fko = 1.0 / (1.0 + exp(16.0 - ko / vor)) nkcc1 = unkcc1*fko*(log((ki * cli / vir**2) / (ko * clo / vor**2)) + log((nai * cli / vir**2) / (nao * clo / vor**2))) kcc2 = ukcc2 * log((ki * cli / vir**2) / (ko * clo / vor**2)) #Nerst equation - reversal potentials ena = 26.64 * log(nao*vir/(nai*vor)) ek = 26.64 * log(ko*vir/(ki*vor)) ecl = 26.64 * log(cli*vor/(clo*vir)) p = o2switch * p_max / (1.0 + exp((args['pparam'] - (o2ecs/vor) * alpha)/3.0)) pump = args['nrnPumpFactor'] * (p / (1.0 + exp((25.0 - nai / vir)/3.0))) * (1.0 / (1.0 + exp(3.5 - ko / vor))) gliapump = args['glialPumpFactor'] * (1.0/3.0) * (p / (1.0 + exp((25.0 - gnai_initial) / 3.0))) * (1.0 / (1.0 + exp(3.5 - ko/vor))) g_glia = g_gliamax / (1.0 + exp(-(o2ecs*alpha/vor - 2.5)/0.2)) glia12 = g_glia / (1.0 + exp((18.0 - ko / vor)/2.5)) epsilon_k = (epsilon_k_max/(1.0 + exp(-((o2ecs/vor) * alpha - 2.5)/0.2))) * (1.0/(1.0 + exp((-20 + ((1.0+1.0/beta0 -vor)/vor) /2.0)))) #RATES-------------------------------------------------------------------------- #dm/dt m_gate = rxd.Rate(mgate, (alpha_m * (1.0 - mgate)) - (beta_m * mgate)) #dh/dt h_gate = rxd.Rate(hgate, (alpha_h * (1.0 - hgate)) - (beta_h * hgate)) #dn/dt n_gate = rxd.Rate(ngate, (alpha_n * (1.0 - ngate)) - (beta_n * ngate)) #Diffusion o2diff = rxd.Rate(o2ecs, ecsbc*(epsilon_o2 * (oa_bath - o2ecs/vor))) kdiff = rxd.Rate(ko, ecsbc*(epsilon_k * (ko_initial - ko/vor))) nadiff = rxd.Rate(nao, ecsbc*(epsilon_k * (nao_initial - nao/vor))) cldiff = rxd.Rate(clo, ecsbc*(epsilon_k * (clo_initial - clo/vor))) # K+ infusion if args['infuse']: kinfuse = rxd.Rate(ko, iscore * (epsilon_k_max * (args['k0'] - ko))) #change in volume osm = (1.1029 - 0.1029*exp( ( (nao + ko + clo + 18.0)/vor - (nai + ki + cli + 132.0)/vir)/20.0)) scalei = (avo*1e-18) scaleo = (avo*1e-18) vol_dyn = rxd.MultiCompartmentReaction(vir, dump[ecs], -scalei*vtau*(osm-vir), mass_action=False, membrane=mem, scale_by_area=False, membrane_flux=False) vol_dyn_ecs = rxd.MultiCompartmentReaction(dump[cyt], vor, -scaleo*vtau*(osm-vir), mass_action=False, membrane=mem, scale_by_area=False, membrane_flux=False) #CURRENTS/LEAKS ---------------------------------------------------------------- #sodium (Na) current if args['dendL'] > 0: if pcid == 0: print('L = ' + str(args['dendL'])) def difDend(nd): if nd.sec.name().split('.')[-1] == 'soma': return 1.0 return 0.0 dendP = rxd.Parameter([mem], name='dendP', value = lambda nd: difDend(nd)) na_current = rxd.MultiCompartmentReaction(nai, nao, dendP * gna * (v - ena), mass_action=False, membrane=mem, membrane_flux=True) else: if pcid == 0: print('sphere') na_current = rxd.MultiCompartmentReaction(nai, nao, gna * (v - ena), mass_action=False, membrane=mem, membrane_flux=True) #potassium (K) current k_current = rxd.MultiCompartmentReaction(ki, ko, gk * (v - ek), mass_action=False, membrane=mem, membrane_flux=True) #nkcc1 (Na+/K+/2Cl- cotransporter) nkcc1_current1 = rxd.MultiCompartmentReaction(cli, clo, 2.0 * nkcc1 * volume_scale, mass_action=False, membrane=mem, membrane_flux=True) nkcc1_current2 = rxd.MultiCompartmentReaction(ki, ko, nkcc1*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) nkcc1_current3 = rxd.MultiCompartmentReaction(nai, nao, nkcc1*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) #kcc2 (K+/Cl- cotransporter) kcc2_current1 = rxd.MultiCompartmentReaction(cli, clo, kcc2*volume_scale, membrane=mem, mass_action=False, membrane_flux=True) kcc2_current2 = rxd.MultiCompartmentReaction(ki, ko, kcc2*volume_scale, membrane=mem, mass_action=False, membrane_flux=True) #sodium leak na_leak = rxd.MultiCompartmentReaction(nai, nao, gnabar_l*(v - ena), mass_action=False, membrane=mem, membrane_flux=True) #potassium leak k_leak = rxd.MultiCompartmentReaction(ki, ko, gkbar_l*(v - ek), mass_action=False, membrane=mem, membrane_flux=True) #chlorine (Cl) leak cl_current = rxd.MultiCompartmentReaction(cli, clo, gclbar_l * (ecl - v), mass_action=False, membrane=mem, membrane_flux=True) if args['ouabain']: #Na+/K+ pump current in neuron (2K+ in, 3Na+ out) pump_current = rxd.MultiCompartmentReaction(ki, ko, -2.0*pump*volume_scale*notcore, mass_action=False, membrane=mem, membrane_flux=True) pump_current_na = rxd.MultiCompartmentReaction(nai, nao, 3.0*pump*volume_scale*notcore, mass_action=False, membrane=mem, membrane_flux=True) #Na+/K+ pump current in glia (2K+ in, 3Na+ out) gpump_current_na = rxd.Rate(nao, 3.0*gliapump*notcore) #Glia K+ current glia_k_current = rxd.Rate(ko, -glia12 - 2*gliapump*notcore) # O2 dynamics o2_pump = rxd.Rate(o2ecs, -gliapump * notcore) oxygen = rxd.MultiCompartmentReaction(o2ecs, dump[cyt], pump * volume_scale * notcore, mass_action=False, membrane=mem) elif args['ischemCore']: #Na+/K+ pump current in neuron (2K+ in, 3Na+ out) pump_current = rxd.MultiCompartmentReaction(ki, ko, -2.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) pump_current_na = rxd.MultiCompartmentReaction(nai, nao, 3.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) #Na+/K+ pump current in glia (2K+ in, 3Na+ out) gpump_current_na = rxd.Rate(nao, 3.0*gliapump) #Glia K+ current glia_k_current = rxd.Rate(ko, -glia12 - 2*gliapump) # O2 dynamics o2_pump = rxd.Rate(o2ecs, -gliapump * iscore) oxygen = rxd.MultiCompartmentReaction(o2ecs, dump[cyt], pump * volume_scale * iscore, mass_action=False, membrane=mem) elif args['edemaCore']: #Na+/K+ pump current in neuron (2K+ in, 3Na+ out) pump_current = rxd.MultiCompartmentReaction(ki, ko, -2.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) pump_current_na = rxd.MultiCompartmentReaction(nai, nao, 3.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) #Na+/K+ pump current in glia (2K+ in, 3Na+ out) gpump_current_na = rxd.Rate(nao, 3.0*gliapump) #Glia K+ current glia_k_current = rxd.Rate(ko, -glia12 - 2*gliapump) elif args['ischemEdemaCore']: #Na+/K+ pump current in neuron (2K+ in, 3Na+ out) pump_current = rxd.MultiCompartmentReaction(ki, ko, -2.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) pump_current_na = rxd.MultiCompartmentReaction(nai, nao, 3.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) #Na+/K+ pump current in glia (2K+ in, 3Na+ out) gpump_current_na = rxd.Rate(nao, 3.0*gliapump) #Glia K+ current glia_k_current = rxd.Rate(ko, -glia12 - 2*gliapump) # #O2 dynamics o2_pump = rxd.Rate(o2ecs, -gliapump * iscore) oxygen = rxd.MultiCompartmentReaction(o2ecs, dump[cyt], pump * volume_scale * iscore, mass_action=False, membrane=mem) elif args['O2consume']: #Na+/K+ pump current in neuron (2K+ in, 3Na+ out) pump_current = rxd.MultiCompartmentReaction(ki, ko, -2.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) pump_current_na = rxd.MultiCompartmentReaction(nai, nao, 3.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) #Na+/K+ pump current in glia (2K+ in, 3Na+ out) gpump_current_na = rxd.Rate(nao, 3.0*gliapump) #Glia K+ current glia_k_current = rxd.Rate(ko, -glia12 - 2*gliapump) o2_pump = rxd.Rate(o2ecs, -gliapump) oxygen = rxd.MultiCompartmentReaction(o2ecs, dump[cyt], pump * volume_scale, mass_action=False, membrane=mem) else: #Na+/K+ pump current in neuron (2K+ in, 3Na+ out) pump_current = rxd.MultiCompartmentReaction(ki, ko, -2.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) pump_current_na = rxd.MultiCompartmentReaction(nai, nao, 3.0*pump*volume_scale, mass_action=False, membrane=mem, membrane_flux=True) #Na+/K+ pump current in glia (2K+ in, 3Na+ out) gpump_current_na = rxd.Rate(nao, 3.0*gliapump) #Glia K+ current glia_k_current = rxd.Rate(ko, -glia12 - 2*gliapump) pc.set_maxstep(100) # required when using multiple processes t = h.Vector().record(h._ref_t) soma_v = [] soma_ki = [] soma_nai = [] soma_cli = [] soma_nao = [] soma_ko = [] soma_clo = [] soma_o2 = [] soma_vir = [] soma_vor = [] rpos = [] cell_positions = [(sec.x3d(0)**2 + sec.y3d(0)**2 + sec.z3d(0)**2)**(0.5) for sec in soma_list] def saveconc(): numpy.save(os.path.join(outdir,"k_%i.npy" % int(h.t)), k[ecs].states3d) numpy.save(os.path.join(outdir,"na_%i.npy" % int(h.t)), na[ecs].states3d) numpy.save(os.path.join(outdir,"cl_%i.npy" % int(h.t)), cl[ecs].states3d) numpy.save(os.path.join(outdir,'o2_%i.npy' % int(h.t)), o2ecs.states3d) for i in range(int(Lx//10)): # for r, soma in zip(cell_positions, h.allsec()): for r, soma in zip(cell_positions, soma_list): if (10.0*i-2.5) < r < (10.0*i+2.5): print(i,r) rpos.append((soma.x3d(0), soma.y3d(0), soma.z3d(0))) soma_v.append(h.Vector().record(soma(0.5)._ref_v)) soma_nai.append(h.Vector().record(soma(0.5)._ref_nai)) soma_ki.append(h.Vector().record(soma(0.5)._ref_ki)) soma_cli.append(h.Vector().record(soma(0.5)._ref_cli)) soma_nao.append(h.Vector().record(soma(0.5)._ref_nao)) soma_ko.append(h.Vector().record(soma(0.5)._ref_ko)) soma_clo.append(h.Vector().record(soma(0.5)._ref_clo)) soma_o2.append(h.Vector().record(o2ecs.node_by_location(soma.x3d(0),soma.y3d(0),soma.z3d(0))._ref_concentration)) soma_vir.append(h.Vector().record(soma(0.5)._ref_volumei)) soma_vor.append(h.Vector().record(vor.node_by_location(soma.x3d(0),soma.y3d(0),soma.z3d(0))._ref_value)) break recs = {'v':soma_v, 'ki':soma_ki, 'nai':soma_nai, 'cli':soma_cli, 't':t, 'ko':soma_ko, 'nao':soma_nao, 'clo':soma_clo, 'pos':rpos, 'o2':soma_o2, 'vir':soma_vir, 'vor':soma_vor, 'rad':cell_positions} # initialize and set the intracellular concentrations def progress_bar(tstop, size=40): """ report progress of the simulation """ prog = h.t/float(tstop) fill = int(size*prog) empt = size - fill progress = '#' * fill + '-' * empt sys.stdout.write('[%s] %2.1f%% %6.1fms of %6.1fms\r' % (progress, 100*prog, h.t, tstop)) sys.stdout.flush() def plot_rec_neurons(): """ Produces plots of record neurons membrane potential (shown in figure 1C) """ # load the recorded neuron data somaV, pos = [], [] for i in range(nhost): fin = open(os.path.join(outdir,'membrane_potential_%i.pkl' % i),'rb') [sV, p] = pickle.load(fin) fin.close() somaV.extend(sV) pos.extend(p) for idx in range(somaV[0].size()): # create a plot for each record (100ms) fig = pyplot.figure() ax = fig.add_subplot(111,projection='3d') ax.set_position([0.0,0.05,0.9,0.9]) ax.set_xlim([-Lx/2.0, Lx/2.0]) ax.set_ylim([-Ly/2.0, Ly/2.0]) ax.set_zlim([-Lz/2.0, Lz/2.0]) ax.set_xticks([int(Lx*i/4.0) for i in range(-2,3)]) ax.set_yticks([int(Ly*i/4.0) for i in range(-2,3)]) ax.set_zticks([int(Lz*i/4.0) for i in range(-2,3)]) cmap = pyplot.get_cmap('jet') for ii in range(Nrec): x = pos[ii] soma_z = [x[2]-somaR,x[2]+somaR] cell_x = [x[0],x[0]] cell_y = [x[1],x[1]] scolor = cmap((somaV[ii].get(idx)+70.0)/70.0) # plot the soma ax.plot(cell_x, cell_y, soma_z, linewidth=2, color=scolor, alpha=0.5) norm = colors.Normalize(vmin=-70,vmax=0) pyplot.title('Neuron membrane potentials; t = %gms' % (idx * 100)) # add a colorbar ax1 = fig.add_axes([0.88,0.05,0.04,0.9]) cb1 = colorbar.ColorbarBase(ax1, cmap=cmap, norm=norm, orientation='vertical') cb1.set_label('mV') # save the plot filename = 'neurons_{:05d}.png'.format(idx) pyplot.savefig(os.path.join(outdir,filename)) pyplot.close() def plot_image_data(data, min_val, max_val, filename, title): """Plot a 2d image of the data""" # sb = scalebar.ScaleBar(1e-6) # sb.location='lower left' pyplot.imshow(data, extent=k[ecs].extent('xy'), vmin=min_val, vmax=max_val, interpolation='nearest', origin='lower') pyplot.colorbar() # sb = scalebar.ScaleBar(1e-6) # sb.location='lower left' ax = pyplot.gca() ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) # ax.add_artist(sb) pyplot.title(title) pyplot.xlim(k[ecs].extent('x')) pyplot.ylim(k[ecs].extent('y')) pyplot.savefig(os.path.join(outdir,filename)) pyplot.close() def boxoff(ax): ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() def plotVm(name): fig = pyplot.figure(dpi=200) ax = pyplot.subplot(111) # pyplot.plot(cell_positions, [sec.v for sec in h.allsec()], '.') pyplot.plot(cell_positions, [sec.v for sec in soma_list], '.') pyplot.xlabel('distance (μm)') pyplot.ylabel('membrane potential (mV)') pyplot.ylim([-80,40]) pyplot.title('t = %6.0fms' % h.t) boxoff(ax) fig.savefig(name) pyplot.close() def run(tstop): """ Run the simulations saving figures every 100ms and recording the wave progression every time step""" if pcid == 0: # record the wave progress (shown in figure 2) name = '' fout = open(os.path.join(outdir,'wave_progress%s.txt' % name),'a') last_plot = 0 last_print = 0 plotnum = 0 bwinsz = 10 time = [] saveint = 100 dumpint = 1000 last_dump = 0 while h.t < tstop: time.append(h.t) if int(h.t) % saveint == 0: # plot extracellular concentrations averaged over depth every 100ms if pcid == 0: plot_image_data(k[ecs].states3d.mean(2), 3.5, 40, 'k_mean_%05d' % int(h.t/100), 'Potassium concentration; t = %6.0fms' % h.t) plot_image_data(o2ecs.states3d.mean(2), oa_bath * 0.99, oa_bath, 'o2_mean_%05d' % int(h.t/100), 'Oxygen concentration; t = %6.0fms' % h.t) saveconc() if pcid == nhost - 1: plot_image_data(na[ecs].states3d.mean(2), 120, 150, 'na_mean_%05d' % int(h.t/100), 'Sodium concentration; t = %6.0fms' % h.t) plot_image_data(cl[ecs].states3d.mean(2), 100, 150, 'cl_mean_%05d' % int(h.t/100), 'Chloride concentration; t = %6.0fms' % h.t) if pcid == 0: progress_bar(tstop) pc.psolve(pc.t(0)+h.dt) # run the simulation for 1 time step # h.fadvance() # determine the furthest distance from the origin where # extracellular potassium exceeds Kceil (dist) # And the shortest distance from the origin where the extracellular # extracellular potassium is below Kceil (dist1) if pcid == 0 and h.t - last_print > 1.0: last_print = h.t dist = 0 dist1 = 1e9 for nd in k.nodes: if str(nd.region).split('(')[0] == 'Extracellular': r = (nd.x3d**2+nd.y3d**2+nd.z3d**2)**0.5 if nd.concentration>Kceil and r > dist: dist = r if nd.concentration<=Kceil and r < dist1: dist1 = r fout.write("%g\t%g\t%g\n" %(h.t, dist, dist1)) fout.flush() if pcid == 0: progress_bar(tstop) fout.close() with open(os.path.join(outdir,"recs.pkl"),'wb') as fout: pickle.dump(recs,fout) print("\nSimulation complete. Plotting membrane potentials") # # save membrane potentials soma, pos = [], [] for n in center_rec_neurons: soma.append(n.somaV) pos.append([n.x,n.y,n.z]) with open(os.path.join(outdir,"centermembrane_potential_%i.pkl" % pcid),'wb') as pout: pickle.dump([soma,pos,time],pout) if periph_rec_neurons: soma, pos = [], [] for n in periph_rec_neurons: soma.append(n.somaV) pos.append([n.x,n.y,n.z]) with open(os.path.join(outdir,"periphmembrane_potential_%i.pkl" % pcid),'wb') as pout: pickle.dump([soma,pos,time],pout) pc.barrier() # wait for all processes to save ## restore from previous sim if args['restoredir']: restoredir = args['restoredir'] # restore sim state functions def restoreSS(): svst = h.SaveState() f = h.File(os.path.join(restoredir, 'save_test_'+str(pcid) + '.dat')) svst.fread(f) svst.restore() def restoreSim(): restoreSS() for sp in rxd.species._all_species: s = sp() print(s.name) temp = numpy.load(os.path.join(restoredir, s.name + '_concentrations_' + str(pcid) + '.npy')) s.nodes.concentration = list(temp) print('PCID ' + str(pcid) + ': resotred ' + s.name) fih = h.FInitializeHandler(1, restoreSim) h.finitialize() else: h.finitialize(v_initial) # run the simulation run(args['tstop']) # save final sim state runSS() saveRxd() pc.barrier() h.quit() # v0.0 - realisitc cell dendity for cortex, increased SA to V ratio, cmdline specify anoxic vs normoxic # v0.1 - fixed dend diameter, dend length now cmdline specified # v0.2 - expanded dimensions and number recorded cells, fixed vel smoothing # v0.3 - back to original dimensions, plotting K concentration and membrane potential together to generate a gif, doubled number of threads # v0.4 - r0 = 75, Lz = 500, initial elevate K+ 70mM # v0.5 - fixed [K+] plotting, changed method for calculating SD wave position # v0.6 - changing wave position method again, including firing back into elevated K+ radius, allow user to change between invivo and invitro boundary conds # v0.7 - trying parallel context, still working on wave front postition # v0.8 - fixed so cell position and voltages are only somatic, no more dendritic Vs # v0.9 - reverted back to original calculations of wavefront position and velocity. changed r0 to 100um # v0.10 - cut down dt, adding code for raster plots, potential fix for K wave progress issues # v0.11 - fixing typos, turn off timeout # v0.12 - 1mm^3, save raster data # v0.13 - back down to former volume, 24 threads, and ecs [k+] in core up to 6 # v0.14 - try out recording lfps with LFPsimpy # v0.15 - drop ecs [k+] in core back down to 40, save raster plot # v0.16 - more user specified cmd line args, double volume # v0.17 - reduced oxygen by 95% in core, try keeping [k+] initially uniform # v0.18 - user specified o2 factor # v0.19 - trying fovea-like dimensions # v0.20 - changes to boundary conds for in vivo, diff in Lz for invivo vs invitro, save concs every 100ms # v0.21 - resolved overwriting oxygen rate # v0.22 - added user specification of O2 bath value # v0.23 - remove Na flux from dendrites # v0.24 - remove mg/mL*s conversion factor alpha # v0.25 - switched alpha back for now # v0.26 - translated o2switch by 3e-4 mM O2 hoping to resolve negative [O2] # v0.27 - applied o2switch to o2 consumption by Na/K pumps rather than pump activity to account for anaerobic glycolysis # v0.28 - switch back on pump, upped translation to 5e-4 # v0.29 - trying constant infusion of K+, turn of saving figs for gifs # v0.30 - added option for 2mm x 2mm x 170 um # v0.31 - removed anox oa_bath # v0.32 - removed dependance on o2switch altogether # v0.33 - neuronal pump x100 # v0.34 - back to original oa_bath, no increase in pump activity # v0.35 - user speecifies whether to infuse and factors for neural and glial Na/K pumps # v0.36 - user specification of cell density and option for brainstem-like volume fraction # v0.37 - attempt at 10x pump use of O2 effeciency (as if 10x more o2ecs) # v0.38 - adding stimulation # v0.39 - attempting state saving # v0.40 - only save rxd using collect... use savestate for ephys # v0.41 - cleaned up saving, not useing SaveState # v0.42 - reinstated oa_bath differences, ditched saving, no stims, mini size # v0.43 - reduce saving interval for mini sized / long run sims # v0.44 - user specifies surface area to vol ratio, calculates cell radius and fractional cell volume to keep neuron volume fraction 0.24 # v0.45 - save state at end of the sim, option to restore state # v0.46 - ditch mpi4py, run with nrniv rather than python3 # v0.46.1 - ditched argparse, loading arguments from json file # v0.46.2 - tried moving reinstation to just before calling run() # v0.47 - user specification of p_max # v0.47.1 - looking for no depol for normox by increasing pump activity - changed parameter in equation for p # v0.47.2 - added interval saving every 5 seconds # v0.47.3 - user specifies param in equation for p, toggles O2 consumption # v0.48 - allow for ischemic core where O2 is reduced and not replenished and ECS propertied are altered # v0.48.2 - allow for core with reduced O2 but replenished in addition to previous configuration # v0.48.3 - interval saving of membrane potential files as well # v0.49 - separate ecs for o2 reflecting its a gas # v0.49.1 - still working on spontaneous depol issue, kcc2 was being overwritten, trying first version # v0.49.2 - back to original kcc2 and inserted pas # v0.49.3 - make sure inufuse is just true, not necessarily yes # v0.49.4 - user specifies gpas # v0.49.5 - user specifies Lz # v0.50 - abandoned interval saving, recs_#.pkl files were corrupted # v0.51 - placing rec_neurons at the same depth (z=0) # v0.51.1 - two sets of rec neurons, one at center another near the margin # v0.51.2 - toggle between uniform recordings and at specific depths # v0.51.3 - centermembrane needs to be reflected for raster plotting # v0.51.4 - evenly distributed the center and peripheral recorded neurons # v0.51.5 - includes alphas for primed with propionate and brainstem, changed periph vs center layout # v0.52 - original concentrations, option for original o2 bath, user specified random seeds # v0.53 - setup for cores of ouabain, ischemia, and edema # v0.54 - user specifies neuronal volume fraction, sim computes appropriate radius for cell volume # v0.55 - nonuniform recording setup now has center as random pos in middle 50%, periph as random pos in top/bottom 25% # v0.56 - fixed lambda for mannitol, added user specification of tortuosity and O2 with otherwise perfused parameters # v1.00 - cleaned up version for fresh repo associated w/ the paper