:Reference :Colbert and Pan 2002 NEURON { SUFFIX NaTa_t USEION na READ ena WRITE ina RANGE gNaTa_tbar, gNaTa_t, ina, offm, offh, slom, sloh, tauma, taumb, tauha, tauhb } UNITS { (S) = (siemens) (mV) = (millivolt) (mA) = (milliamp) } PARAMETER { gNaTa_tbar = 0.00001 (S/cm2) offm = -38 (mV) offh = -66 (mV) slom = 6.0 (mV) sloh = 6.0 (mV) tauma = 5.49451 (ms) taumb = 8.06452 (ms) tauha = 66.6667 (ms) tauhb = 66.6667 (ms) } ASSIGNED { v (mV) ena (mV) ina (mA/cm2) gNaTa_t (S/cm2) mInf mTau mAlpha mBeta hInf hTau hAlpha hBeta } STATE { m h } BREAKPOINT { SOLVE states METHOD cnexp gNaTa_t = gNaTa_tbar*m*m*m*h ina = gNaTa_t*(v-ena) } DERIVATIVE states { rates() m' = (mInf-m)/mTau h' = (hInf-h)/hTau } INITIAL{ rates() m = mInf h = hInf } PROCEDURE rates(){ LOCAL qt qt = 2.3^((34-21)/10) UNITSOFF if(v == offm){ v = v+0.0001 } mAlpha = -(offm-v)/(1-(exp((offm-v)/slom)))/tauma mBeta = (offm-v)/(1-(exp(-(offm-v)/slom)))/taumb mTau = (1/(mAlpha + mBeta))/qt mInf = mAlpha/(mAlpha + mBeta) if(v == offh){ v = v + 0.0001 } hAlpha = (offh-v)/(1-(exp(-(offh-v)/sloh)))/tauha hBeta = -(offh-v)/(1-(exp((offh-v)/sloh)))/tauhb hTau = (1/(hAlpha + hBeta))/qt hInf = hAlpha/(hAlpha + hBeta) UNITSON }