%% parametri dt=0.0001; %0.1 millisecondi t_end3=0.15; t=0:dt:t_end3; T=length(t); % Parametri sigmoide e0=2.5; %Hz r=0.7; %1/mV s0=10; %centro della sigmoide % ritardi nella comunicazione tra colonne diverse D_intraLayer=round(dt/dt); D_extraLayer=round(dt/dt); %delay di 0.0166 secondi ? % costanti di tempo sinapsi intra-colonna a=[1/7.7 1/34 1/6.8]*1000; %nell'ordine: ae, as, af; a=1/tau (1/secondi) % Guadagni (mV) delle sinapsi (G) G=[5.17 4.45 57.1]; %Ge = 5.17; (per h_e) %Gs = 4.45; (per h_s) %Gf = 57.1; (per h_f) %pesi sinaptici: C(:,1) = 31.7*ones(1,numero_colonne); %Cep C(:,2) = 17.3*ones(1,numero_colonne); %Cpe C(:,3) = 51.9*ones(1,numero_colonne); %Csp C(:,4) = 100*ones(1,numero_colonne); %Cps C(:,5) = 100*ones(1,numero_colonne); %Cfs C(:,6) = 66.9*ones(1,numero_colonne); %Cfp C(:,7) = 16*ones(1,numero_colonne); %Cpf C(:,8) = 18*ones(1,numero_colonne); %Cff %% addestramento Wp_L2L3=zeros(numero_colonne,numero_colonne); gammaWb=10; thresh_lowb=0.7; Wp_L2L3_max=11; %var stato L2 yp2=zeros(numero_colonne,T); xp2=zeros(numero_colonne,T); vp2=zeros(numero_colonne,1); zp2=zeros(numero_colonne,T); ye2=zeros(numero_colonne,T); xe2=zeros(numero_colonne,T); ve2=zeros(numero_colonne,1); ze2=zeros(numero_colonne,T); ys2=zeros(numero_colonne,T); xs2=zeros(numero_colonne,T); vs2=zeros(numero_colonne,1); zs2=zeros(numero_colonne,T); yf2=zeros(numero_colonne,T); xf2=zeros(numero_colonne,T); zf2=zeros(numero_colonne,T); vf2=zeros(numero_colonne,1); xl2=zeros(numero_colonne,T); yl2=zeros(numero_colonne,T); mf2=zeros(numero_colonne,1); %var stato L3 yp3=zeros(numero_colonne,T); xp3=zeros(numero_colonne,T); vp3=zeros(numero_colonne,1); zp3=zeros(numero_colonne,T); ye3=zeros(numero_colonne,T); xe3=zeros(numero_colonne,T); ve3=zeros(numero_colonne,1); ze3=zeros(numero_colonne,T); ys3=zeros(numero_colonne,T); xs3=zeros(numero_colonne,T); vs3=zeros(numero_colonne,1); zs3=zeros(numero_colonne,T); yf3=zeros(numero_colonne,T); xf3=zeros(numero_colonne,T); zf3=zeros(numero_colonne,T); vf3=zeros(numero_colonne,1); xl3=zeros(numero_colonne,T); yl3=zeros(numero_colonne,T); mf3=zeros(numero_colonne,1); Ep2=zeros(numero_colonne,1); If2=zeros(numero_colonne,1); Ep3=zeros(numero_colonne,1); If3=zeros(numero_colonne,1); sigma_p = sqrt(5/dt); sigma_f = sqrt(5/dt); rng(12) np2 = randn(numero_colonne,T)*sigma_p; nf2 = randn(numero_colonne,T)*sigma_f; rng(13) np3 = randn(numero_colonne,T)*sigma_p; nf3 = randn(numero_colonne,T)*sigma_f; if SET_PATT==3 SEQ2=all_patterns(:,[2:5 7:10]); SEQ3=[all_patterns(:,1:4) all_patterns(:,6:9)]; else SEQ2=all_patterns; SEQ3=[zeros(numero_colonne,1) all_patterns(:,1:end-1)]; end J=size(SEQ2,2); w = waitbar(0,'Training L2 e L3 (fase 2)...','WindowStyle','modal'); for j=1:J %completo ingressi a piramidali e gaba fast: mp2=SEQ2(:,j)*2700; mp3=SEQ3(:,j)*2700; for k=1:T-1 %ciclo nel tempo... up2=np2(:,k)+mp2; uf2=nf2(:,k)+mf2; up3=np3(:,k)+mp3; uf3=nf3(:,k)+mf3; if (k>D_intraLayer) If2=K_L2L2*yp2(:,k-D_intraLayer)+A_L2L2*zp2(:,k-D_intraLayer); If3=K_L3L3*yp3(:,k-D_intraLayer)+A_L3L3*zp3(:,k-D_intraLayer); end if(k>D_extraLayer) Ep2=Wp_L2L3*yp3(:,k-D_extraLayer); %Ep3=Wp_L3L2*yp2(:,k-D_extraLayer); %input extra-layer solo dal maestro! end %potenziali post-sinaptici: (comb lin degli outputs standard) vp2(:)=C(:,2).*ye2(:,k)-C(:,4).*ys2(:,k)-C(:,7).*yf2(:,k)+Ep2; ve2(:)=C(:,1).*yp2(:,k); vs2(:)=C(:,3).*yp2(:,k); vf2(:)=C(:,6).*yp2(:,k)-C(:,5).*ys2(:,k)-C(:,8).*yf2(:,k)+yl2(:,k)+If2; %spikes: zp2(:,k)=2*e0./(1+exp(-r*(vp2(:)-s0))); ze2(:,k)=2*e0./(1+exp(-r*(ve2(:)-s0))); zs2(:,k)=2*e0./(1+exp(-r*(vs2(:)-s0))); zf2(:,k)=2*e0./(1+exp(-r*(vf2(:)-s0))); %potenziali post-sinaptici: (comb lin degli outputs standard) vp3(:)=C(:,2).*ye3(:,k)-C(:,4).*ys3(:,k)-C(:,7).*yf3(:,k)+Ep3; ve3(:)=C(:,1).*yp3(:,k); vs3(:)=C(:,3).*yp3(:,k); vf3(:)=C(:,6).*yp3(:,k)-C(:,5).*ys3(:,k)-C(:,8).*yf3(:,k)+yl3(:,k)+If3; %spikes: zp3(:,k)=2*e0./(1+exp(-r*(vp3(:)-s0))); ze3(:,k)=2*e0./(1+exp(-r*(ve3(:)-s0))); zs3(:,k)=2*e0./(1+exp(-r*(vs3(:)-s0))); zf3(:,k)=2*e0./(1+exp(-r*(vf3(:)-s0))); %aggiornamento sinapsi... if k>500 ATT_PRE=(zp3(:,k)/(2*e0) - thresh_lowb)'; %1x400 ATT_PRE(ATT_PRE<0)=0; ATT_POST=(zp2(:,k)/(2*e0)-thresh_lowb); %400x1 ATT_POST(ATT_POST<0)=0; WEIGHT=(Wp_L2L3_max - Wp_L2L3).*(ones(numero_colonne, numero_colonne)-eye(numero_colonne)); Wp_L2L3 = Wp_L2L3 + gammaWb .* (ATT_POST * ATT_PRE) .* WEIGHT; end xp2(:,k+1)=xp2(:,k)+(G(1)*a(1)*zp2(:,k)-2*a(1)*xp2(:,k)-a(1)*a(1)*yp2(:,k))*dt; yp2(:,k+1)=yp2(:,k)+xp2(:,k)*dt; xe2(:,k+1)=xe2(:,k)+(G(1)*a(1)*(ze2(:,k)+up2(:)./C(:,2))-2*a(1)*xe2(:,k)-a(1)*a(1)*ye2(:,k))*dt; ye2(:,k+1)=ye2(:,k)+xe2(:,k)*dt; xs2(:,k+1)=xs2(:,k)+(G(2)*a(2)*zs2(:,k)-2*a(2)*xs2(:,k)-a(2)*a(2)*ys2(:,k))*dt; ys2(:,k+1)=ys2(:,k)+xs2(:,k)*dt; xl2(:,k+1)=xl2(:,k)+(G(1)*a(1)*uf2(:)-2*a(1)*xl2(:,k)-a(1)*a(1)*yl2(:,k))*dt; yl2(:,k+1)=yl2(:,k)+xl2(:,k)*dt; xf2(:,k+1)=xf2(:,k)+(G(3)*a(3)*zf2(:,k)-2*a(3)*xf2(:,k)-a(3)*a(3)*yf2(:,k))*dt; yf2(:,k+1)=yf2(:,k)+xf2(:,k)*dt; xp3(:,k+1)=xp3(:,k)+(G(1)*a(1)*zp3(:,k)-2*a(1)*xp3(:,k)-a(1)*a(1)*yp3(:,k))*dt; yp3(:,k+1)=yp3(:,k)+xp3(:,k)*dt; xe3(:,k+1)=xe3(:,k)+(G(1)*a(1)*(ze3(:,k)+up3(:)./C(:,2))-2*a(1)*xe3(:,k)-a(1)*a(1)*ye3(:,k))*dt; ye3(:,k+1)=ye3(:,k)+xe3(:,k)*dt; xs3(:,k+1)=xs3(:,k)+(G(2)*a(2)*zs3(:,k)-2*a(2)*xs3(:,k)-a(2)*a(2)*ys3(:,k))*dt; ys3(:,k+1)=ys3(:,k)+xs3(:,k)*dt; xl3(:,k+1)=xl3(:,k)+(G(1)*a(1)*uf3(:)-2*a(1)*xl3(:,k)-a(1)*a(1)*yl3(:,k))*dt; yl3(:,k+1)=yl3(:,k)+xl3(:,k)*dt; xf3(:,k+1)=xf3(:,k)+(G(3)*a(3)*zf3(:,k)-2*a(3)*xf3(:,k)-a(3)*a(3)*yf3(:,k))*dt; yf3(:,k+1)=yf3(:,k)+xf3(:,k)*dt; end waitbar(j/J,w); end close(w)