TITLE Low threshold calcium current : : Ca++ current responsible for low threshold spikes (LTS) : Differential equations : : Model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992. : The kinetics is described by Goldman-Hodgkin-Katz equations, : using a m2h format, according to the voltage-clamp data : (whole cell patch clamp) of Huguenard & Prince, J. Neurosci. : 12: 3804-3817, 1992. : : This model is described in detail in: : Destexhe A, Neubig M, Ulrich D and Huguenard JR. : Dendritic low-threshold calcium currents in thalamic relay cells. : Journal of Neuroscience 18: 3574-3588, 1998. : (a postscript version of this paper, including figures, is available on : the Internet at http://cns.fmed.ulaval.ca) : : - shift parameter for screening charge : - empirical correction for contamination by inactivation (Huguenard) : - GHK equations : : : Written by Alain Destexhe, Laval University, 1995 : INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX itGHK USEION ca READ cai,cao WRITE ica RANGE pcabar, m_inf, tau_m, h_inf, tau_h, shift, actshift GLOBAL qm, qh } UNITS { (molar) = (1/liter) (mV) = (millivolt) (mA) = (milliamp) (mM) = (millimolar) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } PARAMETER { v (mV) celsius = 36 (degC) pcabar =.2e-3 (cm/s) : Maximum Permeability shift = 2 (mV) : corresponds to 2mM ext Ca++ actshift = 0 (mV) : shift of activation curve (towards hyperpol) cai = 2.4e-4 (mM) : adjusted for eca=120 mV cao = 2 (mM) qm = 5 : q10's for activation and inactivation qh = 3 : from Coulter et al., J Physiol 414: 587, 1989 } STATE { m h } ASSIGNED { ica (mA/cm2) m_inf tau_m (ms) h_inf tau_h (ms) phi_m phi_h } BREAKPOINT { SOLVE castate METHOD cnexp ica = pcabar * m*m*h * ghk(v, cai, cao) } DERIVATIVE castate { evaluate_fct(v) m' = (m_inf - m) / tau_m h' = (h_inf - h) / tau_h } UNITSOFF INITIAL { phi_m = qm ^ ((celsius-24)/10) phi_h = qh ^ ((celsius-24)/10) evaluate_fct(v) m = m_inf h = h_inf } PROCEDURE evaluate_fct(v(mV)) { : : The kinetic functions are taken as described in the model of : Huguenard & McCormick, and corresponds to a temperature of 23-25 deg. : Transformation to 36 deg assuming Q10 of 5 and 3 for m and h : (as in Coulter et al., J Physiol 414: 587, 1989). : : The activation functions were estimated by John Huguenard. : The V_1/2 were of -57 and -81 in the vclamp simulations, : and -60 and -84 in the current clamp simulations. : : The activation function were empirically corrected in order to account : for the contamination of inactivation. Therefore the simulations : using these values reproduce more closely the voltage clamp experiments. : (cfr. Huguenard & McCormick, J Neurophysiol, 1992). : m_inf = 1.0 / ( 1 + exp(-(v+shift+actshift+57)/6.2) ) h_inf = 1.0 / ( 1 + exp((v+shift+81)/4.0) ) tau_m = ( 0.612 + 1.0 / ( exp(-(v+shift+actshift+132)/16.7) + exp((v+shift+actshift+16.8)/18.2) ) ) / phi_m if( (v+shift) < -80) { tau_h = exp((v+shift+467)/66.6) / phi_h } else { tau_h = ( 28 + exp(-(v+shift+22)/10.5) ) / phi_h } } FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) { LOCAL z, eci, eco z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15)) eco = co*efun(z) eci = ci*efun(-z) :high cao charge moves inward :negative potential charge moves inward ghk = (.001)*2*FARADAY*(eci - eco) } FUNCTION efun(z) { if (fabs(z) < 1e-4) { efun = 1 - z/2 }else{ efun = z/(exp(z) - 1) } } FUNCTION nongat(v,cai,cao) { : non gated current nongat = pcabar * ghk(v, cai, cao) } UNITSON