:$Id: IT.mod,v 1.12 2004/06/08 19:32:19 billl Exp $ TITLE Low threshold calcium current : : Ca++ current responsible for low threshold spikes (LTS) : THALAMOCORTICAL CELLS : Differential equations : : Model based on the data of Huguenard & McCormick, J Neurophysiol : 68: 1373-1383, 1992 and Huguenard & Prince, J Neurosci. : 12: 3804-3817, 1992. : : Features: : : - kinetics described by Nernst equations using a m2h format : - activation considered at steady-state : - inactivation fit to Huguenard's data using a bi-exp function : - shift for screening charge, q10 of inactivation of 3 : : Described in: : Destexhe, A., Bal, T., McCormick, D.A. and Sejnowski, T.J. Ionic : mechanisms underlying synchronized oscillations and propagating waves : in a model of ferret thalamic slices. Journal of Neurophysiology 76: : 2049-2070, 1996. (see http://www.cnl.salk.edu/~alain) : : : Alain Destexhe, Salk Institute and Laval University, 1995 : INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX ittc USEION ca READ cai,cao WRITE ica GLOBAL q10m,q10h RANGE g, gmax, m_inf, tau_m, h_inf, tau_h, shift, i } UNITS { (molar) = (1/liter) (mV) = (millivolt) (mA) = (milliamp) (mM) = (millimolar) FARADAY = (faraday) (coulomb) R = (k-mole) (joule/degC) } PARAMETER { v (mV) gmax = 0.0022 (mho/cm2) q10m = 3 : Q10 of activation q10h = 3 : Q10 of inactivation exptemp = 24 (degC) shift = 2 (mV) : corresponds to 2mM ext Ca++ cai = 2.4e-4 (mM) : adjusted for eca=120 mV cao = 2 (mM) } STATE { m h } ASSIGNED { g (mho/cm2) i (mA/cm2) ica (mA/cm2) carev (mV) m_inf tau_m (ms) : dummy variable for compatibility h_inf tau_h (ms) phi_m phi_h celsius } BREAKPOINT { SOLVE states METHOD cnexp carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai) g = gmax * m * m * h i = g * (v-carev) ica = i } DERIVATIVE states { mh(v) m' = (m_inf - m) / tau_m h' = (h_inf - h) / tau_h } UNITSOFF INITIAL { : : Transformation to 36 deg assuming Q10 of 3 for h : (as in Coulter et al., J Physiol 414: 587, 1989) phi_m = q10m ^ ((celsius-exptemp)/10) phi_h = q10h ^ ((celsius-exptemp)/10) mh(v) h = h_inf m = m_inf } PROCEDURE mh (v(mV)) { LOCAL Vm Vm = v + shift m_inf = 1.0 / ( 1 + exp(-(Vm+57)/6.2) ) h_inf = 1.0 / ( 1 + exp((Vm+81)/4.0) ) : tau_m = (0.822/(exp(-(Vm+130 )/16.7) + exp((Vm+14.8)/18.2) ) + 0.480)/phi_m tau_m = (1 / (exp(-(Vm+129.6)/16.7) + exp((Vm+14.8)/18.2) ) + 0.612)/phi_m : tau_h = ( 8.2+(56.6+0.27*exp((Vm+113.2)/5))/(1+exp((Vm+84)/3.2)))/phi_h tau_h = (30.8+(211.4 + exp((Vm+113.2)/5))/(1+exp((Vm+84)/3.2)))/phi_h } UNITSON