TITLE kinetic NMDA receptor model COMMENT ----------------------------------------------------------------------------- Kinetic model of NMDA receptors =============================== 10-state gating model: Kampa et al. (2004) J Physiol U -- Cl -- O \ | \ \ \ | \ \ UMg -- ClMg - OMg | | D1 | | \ | D2 \ | \ D1Mg \ | D2Mg ----------------------------------------------------------------------------- Based on voltage-clamp recordings of NMDA receptor-mediated currents in nucleated patches of rat neocortical layer 5 pyramidal neurons (Kampa 2004), this model was fit with AxoGraph directly to experimental recordings in order to obtain the optimal values for the parameters. ----------------------------------------------------------------------------- This mod file does not include mechanisms for the release and time course of transmitter; it should to be used in conjunction with a sepearate mechanism to describe the release of transmitter and tiemcourse of the concentration of transmitter in the synaptic cleft (to be connected to pointer C here). ----------------------------------------------------------------------------- See details of NEURON kinetic models in: Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of synaptic transmission. In: Methods in Neuronal Modeling (2nd edition; edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1996. Written by Bjoern Kampa in 2004 ----------------------------------------------------------------------------- ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { POINT_PROCESS NMDA_Mg POINTER C RANGE U, Cl, D1, D2, O, UMg, ClMg, D1Mg, D2Mg, OMg RANGE g, gmax, rb, rmb, rmu, rbMg,rmc1b,rmc1u,rmc2b,rmc2u GLOBAL Erev, mg, Rb, Ru, Rd1, Rr1, Rd2, Rr2, Ro, Rc, Rmb, Rmu GLOBAL RbMg, RuMg, Rd1Mg, Rr1Mg, Rd2Mg, Rr2Mg, RoMg, RcMg GLOBAL Rmd1b,Rmd1u,Rmd2b,Rmd2u,rmd1b,rmd1u,rmd2b,rmd2u GLOBAL Rmc1b,Rmc1u,Rmc2b,Rmc2u GLOBAL vmin, vmax, valence, memb_fraction NONSPECIFIC_CURRENT i } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (pS) = (picosiemens) (umho) = (micromho) (mM) = (milli/liter) (uM) = (micro/liter) } PARAMETER { Erev = 5 (mV) : reversal potential gmax = 500 (pS) : maximal conductance mg = 1 (mM) : external magnesium concentration vmin = -120 (mV) vmax = 100 (mV) valence = -2 : parameters of voltage-dependent Mg block memb_fraction = 0.8 : Rates Rb = 10e-3 (/uM /ms) : binding Ru = 5.6e-3 (/ms) : unbinding Ro = 10e-3 (/ms) : opening Rc = 273e-3 (/ms) : closing Rd1 = 2.2e-3 (/ms) : fast desensitisation Rr1 = 1.6e-3 (/ms) : fast resensitisation Rd2 = 0.43e-3 (/ms) : slow desensitisation Rr2 = 0.5e-3 (/ms) : slow resensitisation Rmb = 0.05e-3 (/uM /ms) : Mg binding Open Rmu = 12800e-3 (/ms) : Mg unbinding Open Rmc1b = 0.00005e-3 (/uM /ms) : Mg binding Closed Rmc1u = 2.438312e-3 (/ms) : Mg unbinding Closed Rmc2b = 0.00005e-3 (/uM /ms) : Mg binding Closed2 Rmc2u = 5.041915e-3 (/ms) : Mg unbinding Closed2 Rmd1b = 0.00005e-3 (/uM /ms) : Mg binding Desens1 Rmd1u = 2.98874e-3 (/ms) : Mg unbinding Desens1 Rmd2b = 0.00005e-3 (/uM /ms) : Mg binding Desens2 Rmd2u = 2.953408e-3 (/ms) : Mg unbinding Desens2 RbMg = 10e-3 (/uM /ms) : binding with Mg RuMg = 17.1e-3 (/ms) : unbinding with Mg RoMg = 10e-3 (/ms) : opening with Mg RcMg = 548e-3 (/ms) : closing with Mg Rd1Mg = 2.1e-3 (/ms) : fast desensitisation with Mg Rr1Mg = 0.87e-3 (/ms) : fast resensitisation with Mg Rd2Mg = 0.26e-3 (/ms) : slow desensitisation with Mg Rr2Mg = 0.42e-3 (/ms) : slow resensitisation with Mg } ASSIGNED { v (mV) : postsynaptic voltage i (nA) : current = g*(v - Erev) g (pS) : conductance C (mM) : pointer to glutamate concentration rb (/ms) : binding, [glu] dependent rmb (/ms) : blocking V and [Mg] dependent rmu (/ms) : unblocking V and [Mg] dependent rbMg (/ms) : binding, [glu] dependent rmc1b (/ms) : blocking V and [Mg] dependent rmc1u (/ms) : unblocking V and [Mg] dependent rmc2b (/ms) : blocking V and [Mg] dependent rmc2u (/ms) : unblocking V and [Mg] dependent rmd1b (/ms) : blocking V and [Mg] dependent rmd1u (/ms) : unblocking V and [Mg] dependent rmd2b (/ms) : blocking V and [Mg] dependent rmd2u (/ms) : unblocking V and [Mg] dependent } STATE { : Channel states (all fractions) U : unbound Cl : closed D1 : desensitised 1 D2 : desensitised 2 O : open UMg : unbound with Mg ClMg : closed with Mg D1Mg : desensitised 1 with Mg D2Mg : desensitised 2 with Mg OMg : open with Mg } INITIAL { U = 1 } BREAKPOINT { SOLVE kstates METHOD sparse g = gmax * O i = (1e-6) * g * (v - Erev) } KINETIC kstates { rb = Rb * (1e3) * C rbMg = RbMg * (1e3) * C rmb = Rmb * mg * (1e3) * exp((v-40) * valence * memb_fraction /25) rmu = Rmu * exp((-1)*(v-40) * valence * (1-memb_fraction) /25) rmc1b = Rmc1b * mg * (1e3) * exp((v-40) * valence * memb_fraction /25) rmc1u = Rmc1u * exp((-1)*(v-40) * valence * (1-memb_fraction) /25) rmc2b = Rmc2b * mg * (1e3) * exp((v-40) * valence * memb_fraction /25) rmc2u = Rmc2u * exp((-1)*(v-40) * valence * (1-memb_fraction) /25) rmd1b = Rmd1b * mg * (1e3) * exp((v-40) * valence * memb_fraction /25) rmd1u = Rmd1u * exp((-1)*(v-40) * valence * (1-memb_fraction) /25) rmd2b = Rmd2b * mg * (1e3) * exp((v-40) * valence * memb_fraction /25) rmd2u = Rmd2u * exp((-1)*(v-40) * valence * (1-memb_fraction) /25) ~ U <-> Cl (rb,Ru) ~ Cl <-> O (Ro,Rc) ~ Cl <-> D1 (Rd1,Rr1) ~ D1 <-> D2 (Rd2,Rr2) ~ O <-> OMg (rmb,rmu) ~ UMg <-> ClMg (rbMg,RuMg) ~ ClMg <-> OMg (RoMg,RcMg) ~ ClMg <-> D1Mg (Rd1Mg,Rr1Mg) ~ D1Mg <-> D2Mg (Rd2Mg,Rr2Mg) ~ U <-> UMg (rmc1b,rmc1u) ~ Cl <-> ClMg (rmc2b,rmc2u) ~ D1 <-> D1Mg (rmd1b,rmd1u) ~ D2 <-> D2Mg (rmd2b,rmd2u) CONSERVE U+Cl+D1+D2+O+UMg+ClMg+D1Mg+D2Mg+OMg = 1 }