/* This function separate the columns of tlp.col.?? and calculate properties */ /* of the "PSTHs". */ #include #include #include #include "nr.h" #include "tlp.h" #include "tplp.h" #define NR_END 1 #define FREE_ARG char* /* This function reads the input parameters from the file tplp.n */ /* and computs the maximal column */ void read_input_psth(pst_par *pstpar, fl_st fl) { int icol; rewind (fl.nps); pstpar->epsilon = 1.0e-10; fscanf(fl.nps, "ncol=%d\n", &pstpar->ncol); fprintf(fl.out, "ncol=%d\n", pstpar->ncol); pstpar->colar = ivector(1, pstpar->ncol); fscanf(fl.nps, "colar="); for (icol=1; icol<=pstpar->ncol-1; icol++) fscanf(fl.nps, "%d ", &pstpar->colar[icol]); fscanf(fl.nps, "%d\n", &pstpar->colar[pstpar->ncol]); fprintf(fl.out, "colar="); for (icol=1; icol<=pstpar->ncol-1; icol++) fprintf(fl.out, "%d ", pstpar->colar[icol]); fprintf(fl.out, "%d\n", pstpar->colar[pstpar->ncol]); fscanf(fl.nps, "ult=%d upt=%d ura=%d urb=%d alt=%d apt=%d\n", &pstpar->ult, &pstpar->upt, &pstpar->ura, &pstpar->urb, &pstpar->alt, &pstpar->apt); fscanf(fl.nps, "t_inter=%lf t_off_ra=%lf t_off_rb=%lf\n", &pstpar->t_inter, &pstpar->t_off_ra, &pstpar->t_off_rb); fprintf(fl.out, "ult=%d upt=%d ura=%d urb=%d alt=%d apt=%d\n", pstpar->ult, pstpar->upt, pstpar->ura, pstpar->urb, pstpar->alt, pstpar->apt); fprintf(fl.out, "t_inter=%lf t_off_ra=%lf t_off_rb=%lf\n", pstpar->t_inter, pstpar->t_off_ra, pstpar->t_off_rb); fscanf(fl.nps, "nskip=%d average_cycle=%d\n", &pstpar->nskip, &pstpar->average_cycle); fprintf(fl.out, "nskip=%d average_cycle=%d\n", pstpar->nskip, pstpar->average_cycle); fscanf(fl.nps, "t_integrate=%lf\n", &pstpar->t_integrate); fprintf(fl.out, "t_integrate=%lf\n", pstpar->t_integrate); pstpar->max_nc = 0; for (icol=1; icol<=pstpar->ncol; icol++) { if (pstpar->colar[icol] > pstpar->max_nc) pstpar->max_nc = pstpar->colar[icol]; } fprintf(fl.out, "max_nc=%d\n", pstpar->max_nc); fprintf(fl.out, "\n"); } /* This function analyzes the psths */ void analyze_psth(pst_par *pstpar, save_str *sv, psth_str *ps, fl_st *fl) { double *vec_read; double t_start; double ***av_ar; int icol, iread, iraw, nch; int *num_ar, inar; char cnum[4]; av_ar = d3tensor(1, 6, 1, Mstore, 1, 2); num_ar = ivector(1, 6); for (inar=1; inar<=6; inar++) num_ar[inar] = 0; vec_read = dvector(1, pstpar->max_nc); /* calculating relevant times for comparison figures */ t_start = ((int) (pstpar->Tall * pstpar->ff / 1000.0)) * (1000.0 / pstpar->ff); while (pstpar->Tall - t_start < pstpar->t_inter) t_start -= (1000.0 / pstpar->ff); t_start -= (pstpar->average_cycle - 1) * (1000.0 / pstpar->ff); if (t_start < 0.0) printf("t_start=%lf < 0.0 !\n", t_start); printf("t_start=%lf\n", t_start); for (iraw=0; iraw<=sv->ntsave; iraw++) { for (icol=1; icol<=sv->ncol; icol++) vec_read[icol] = sv->av_save[iraw][icol]; if ((vec_read[1] + pstpar->epsilon >= t_start) && (vec_read[1] - pstpar->epsilon <= t_start + pstpar->average_cycle * (1000.0 / pstpar->ff))) { if (iraw % pstpar->nskip == 0) { /* printf("iraw=%d ult=%d vr1=%lf vmt=%lf v=%lf\n", iraw, pstpar->ult, vec_read[1], (vec_read[1] - t_start) / 1000.0, vec_read[pstpar->ult]); */ store_pr((vec_read[1] - t_start) / 1000.0, vec_read[pstpar->ult], av_ar, num_ar, 1); store_pr((vec_read[1] - t_start) / 1000.0, vec_read[pstpar->upt], av_ar, num_ar, 2); store_pr((vec_read[1] - t_start) / 1000.0, vec_read[pstpar->alt], av_ar, num_ar, 3); store_pr((vec_read[1] - t_start) / 1000.0, vec_read[pstpar->apt], av_ar, num_ar, 4); } } if (vec_read[1] + pstpar->epsilon >= t_start - pstpar->t_off_ra) { if (iraw % pstpar->nskip == 0) { store_pr((vec_read[1] - t_start + pstpar->t_off_ra) / 1000.0, vec_read[pstpar->ura], av_ar, num_ar, 5); } } if (vec_read[1] + pstpar->epsilon >= t_start - pstpar->t_off_rb) { if (iraw % pstpar->nskip == 0) { store_pr((vec_read[1] - t_start + pstpar->t_off_rb) / 1000.0, vec_read[pstpar->urb], av_ar, num_ar, 6); } } } printf("av=%lf %lf\n", av_ar[1][100][1], av_ar[1][100][2]); average_over_cycles(av_ar[1], num_ar[1], pstpar->ff, pstpar->average_cycle, 1, pstpar, ps->psth_res[1], fl); average_over_cycles(av_ar[2], num_ar[2], pstpar->ff, pstpar->average_cycle, 2, pstpar, ps->psth_res[2], fl); average_over_cycles(av_ar[3], num_ar[3], pstpar->ff, pstpar->average_cycle, 3, pstpar, ps->psth_res[3], fl); average_over_cycles(av_ar[4], num_ar[4], pstpar->ff, pstpar->average_cycle, 4, pstpar, ps->psth_res[4], fl); average_over_cycles(av_ar[5], num_ar[5], pstpar->ff, pstpar->average_cycle, 5, pstpar, ps->psth_res[5], fl); average_over_cycles(av_ar[6], num_ar[6], pstpar->ff, pstpar->average_cycle, 6, pstpar, ps->psth_res[6], fl); free_dvector(vec_read, 1, pstpar->max_nc); free_d3tensor(av_ar, 1, 6, 1, Mstore, 1, 2); free_ivector(num_ar, 1, 6); } FILE** fl_vector(long nl, long nh) /* allocate a *FILE vector with subscript range v[nl..nh] */ { FILE **fl; fl = (FILE **)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(FILE*))); if (!fl) nrerror("allocation failure in fl_vector()"); return fl-nl+NR_END; } void free_fl_vector(FILE **fl, long nl, long nh) /* free a *FILE vector allocated with fl_vector() */ { free((FREE_ARG) (fl+nl-NR_END)); } void store_pr(double x1, double x2, double ***av_ar, int *num_ar, int inar) { num_ar[inar]++; if (num_ar[inar] > Mstore) { printf("inar=%d num_ar=%d > Mstore !\n", inar, num_ar[inar]); exit(0); } av_ar[inar][num_ar[inar]][1] = x1; av_ar[inar][num_ar[inar]][2] = x2; /* printf("inar=%d num_ar=%d av_ar=%lf %lf\n", inar, num_ar[inar], av_ar[inar][num_ar[inar]][1], av_ar[inar][num_ar[inar]][2]); */ } void average_over_cycles(double **av_ar, int num_ar, double ff, int average_cycle, int inar, pst_par *pstpar, double *psth_res, fl_st *fl) { double **vec_av, tm, t_in_per, delta_t, dt, diff, a1, a2; int iar, ncut, icut; delta_t = av_ar[2][1] - av_ar[1][1]; ncut = 1 + (int) ( ((1.0 / ff) + 1.0e-6) / delta_t); vec_av = dmatrix(0, ncut, 1, 2); for (icut=0; icut<=ncut; icut++) { vec_av[icut][1] = icut * delta_t; vec_av[icut][2] = 0.0; } for (iar=1; iar<=num_ar; iar++) { tm = av_ar[iar][1]; if (tm < (1.0 * average_cycle) / ff) { t_in_per = tm - (1.0 * ((int) (tm * ff)) / ff); icut = (int) ((t_in_per / delta_t) + 1.0e-10); diff = fabs(t_in_per - icut * delta_t); if (diff < 2.0e-10) { vec_av[icut][2] += av_ar[iar][2]; } else { dt = t_in_per - icut * delta_t; if (dt < 1.0e-10) { printf("dt=%lf < 0!\n", dt); exit(0); } a1 = ((delta_t - dt) / delta_t) * av_ar[iar][2]; a2 = (dt / delta_t) * av_ar[iar][2]; vec_av[icut][2] += a1; vec_av[icut+1][2] += a2; } } } for (icut=0; icut<=ncut-1; icut++) vec_av[icut][2] /= average_cycle; /* icut=0 was changed to icut=1 */ /* for (icut=1; icut<=ncut-1; icut++) fprintf(fu, "%lf %lf\n", vec_av[icut][1], vec_av[icut][2]); */ quantify_psth(vec_av, ncut, ff, average_cycle, inar, delta_t, pstpar, psth_res, fl); free_dmatrix(vec_av, 0, ncut, 1, 2); } void quantify_psth(double **vec_av, int ncut, double ff, int average_cycle, int inar, double delta_t, pst_par *pstpar, double *psth_res, fl_st *fl) { double max_dist, hlat[4], tlat[4], dint, dtint; int icut, ilat; max_dist = find_maximum_dist(vec_av, ncut, ff, inar, delta_t, pstpar, fl); hlat[0] = 0.005 * max_dist; hlat[1] = 0.1 * max_dist; hlat[2] = 0.3 * max_dist; hlat[3] = 0.5 * max_dist; for (ilat=0; ilat<=3; ilat++) { tlat[ilat] = find_latency(hlat[ilat], vec_av, ncut, ff, inar, delta_t, pstpar, fl); } integral_cal(vec_av, ncut, ff, inar, delta_t, pstpar, &dint, &dtint, fl); fprintf(fl->out, "max_dist=%lf", max_dist); for (ilat=0; ilat<=3; ilat++) fprintf(fl->out, " tlat=%lf", tlat[ilat]); fprintf(fl->out, " dint=%lf dtint=%lf", dint, dtint); fprintf(fl->out, "\n"); /* fprintf(fl->res, "%lf %d", ff, inar); for (ilat=0; ilat<=3; ilat++) fprintf(fl->res, " %lf", tlat[ilat]); fprintf(fl->res, " %lf %lf\n", dint, dtint); */ for (ilat=0; ilat<=3; ilat++) psth_res[ilat+1] = tlat[ilat]; psth_res[5] = dint; psth_res[6] = dtint; } double find_maximum_dist(double **vec_av, int ncut, double ff, int inar, double delta_t, pst_par *pstpar, fl_st *fl) { double maxdis; int icut; maxdis=0; for (icut=1; icut<=ncut; icut++) { if (vec_av[icut][2] > maxdis) maxdis = vec_av[icut][2]; } return maxdis; } double find_latency(double hlat, double **vec_av, int ncut, double ff, int inar, double delta_t, pst_par *pstpar, fl_st *fl) { double tlat; int icut, ithr, uabove; ithr = 0; tlat = 0.0; if (vec_av[0][2] > hlat + pstpar->epsilon) { tlat = -0.1; return tlat; } uabove = 0; for (icut=1; icut<=ncut; icut++) { ithr = icut; if (vec_av[icut][2] > hlat) { uabove = 1; break; } } if (uabove = 1) { if (vec_av[ithr-1][2] <= pstpar->epsilon) { if (ithr <= ncut-1) { tlat = lininter(vec_av[ithr][2], vec_av[ithr+1][2], hlat, vec_av[ithr][1], vec_av[ithr+1][1]); } else { tlat = vec_av[ithr][1]; } } else { tlat = lininter(vec_av[ithr-1][2], vec_av[ithr][2], hlat, vec_av[ithr-1][1], vec_av[ithr][1]); } } else { tlat = -999.0; } return tlat; } void integral_cal(double **vec_av, int ncut, double ff, int inar, double delta_t, pst_par *pstpar, double *dint, double *dtint, fl_st *fl) { double xi, xit, t_integrate; int ninteg, icut; t_integrate = pstpar->t_integrate; if (t_integrate > 1.0 / ff) t_integrate = 1.0 / ff; ninteg = (int) (pstpar->epsilon + t_integrate / delta_t); fprintf(fl->out, "ff=%lf inar=%d, ningeg=%d ncut=%d\n", ff, inar, ninteg, ncut); xi = 0.0; xit = 0.0; for (icut=1; icut<=ninteg; icut++) { xi += vec_av[icut][2]; xit += vec_av[icut][2] * vec_av[icut][1]; } xi *= delta_t; xit *= delta_t; *dint = xi; if (xi >= pstpar->epsilon) *dtint = xit / xi; else *dtint = -999.0; }