/* groucho.hoc converted from Traub et al 2005's FORTRAN groucho.f for use in NEURON. This hoc program will create the network model using variables and code that is as similar as possible to the original FORTRAN code Original comments in FORTRAN are retained as hoc comments */ // Report starting and stoping of setup time //system("date> time_groucho_hoc.txt") // Cell types: superficial pyramidal RS; superficial pyramidal FRB; // superficial basket; superficial axoaxonic; superficial LTS; // spiny stellate; tufted deep IB; tufted deep RS; nontufted deep RS; // deep basket; deep axoaxonic; deep LTS; thalamocortical relay (TCR); // nucleus reticularis thalami (nRT). // Fortran: PROGRAM GROUCHO // max number of cells of any one type should be 1000; otherwise problems with broadcasting // axonal potentials (see position code below num_suppyrRS = 1000 num_suppyrFRB = 50 num_supbask = 90 num_supaxax = 90 num_supLTS = 90 num_spinstell = 240 num_tuftIB = 800 num_tuftRS = 200 num_nontuftRS = 500 num_deepbask = 100 num_deepaxax = 100 num_deepLTS = 100 num_TCR = 100 num_nRT = 100 if (one_tenth_ncell) { num_suppyrRS /= 10 num_suppyrFRB /= 10 num_supbask /= 10 num_supaxax /= 10 num_supLTS /= 10 num_spinstell /= 10 num_tuftIB /= 10 num_tuftRS /= 10 num_nontuftRS /= 10 num_deepbask /= 10 num_deepaxax /= 10 num_deepLTS /= 10 num_TCR /= 10 num_nRT /= 10 } // num_spinstell = 240, num_tuftIB = 500, num_tuftRS = 500, // Diego unsure how many tuftRS there are numcomp_suppyrRS = 74 numcomp_suppyrFRB = 74 numcomp_supbask = 59 numcomp_supaxax = 59 numcomp_supLTS = 59 numcomp_spinstell = 59 numcomp_tuftIB = 61 numcomp_tuftRS = 61 numcomp_nontuftRS = 50 numcomp_deepbask = 59 numcomp_deepaxax = 59 numcomp_deepLTS = 59 numcomp_TCR =137 numcomp_nRT = 59 num_suppyrRS_to_suppyrRS = 50 num_suppyrRS_to_suppyrFRB = 50 num_suppyrRS_to_supbask = 90 num_suppyrRS_to_supaxax = 90 num_suppyrRS_to_supLTS = 90 num_suppyrRS_to_spinstell = 3 num_suppyrRS_to_tuftIB = 60 num_suppyrRS_to_tuftRS = 60 num_suppyrRS_to_deepbask = 30 num_suppyrRS_to_deepaxax = 30 num_suppyrRS_to_deepLTS = 30 num_suppyrRS_to_nontuftRS = 3 num_suppyrFRB_to_suppyrRS = 5 num_suppyrFRB_to_suppyrFRB= 5 num_suppyrFRB_to_supbask = 5 num_suppyrFRB_to_supaxax = 5 num_suppyrFRB_to_supLTS = 5 num_suppyrFRB_to_spinstell= 1 num_suppyrFRB_to_tuftIB = 3 num_suppyrFRB_to_tuftRS = 3 num_suppyrFRB_to_deepbask = 3 num_suppyrFRB_to_deepaxax = 3 num_suppyrFRB_to_deepLTS = 3 // num_suppyrFRB_to_nontuftRS= 3 num_suppyrFRB_to_nontuftRS= 1 // small per Thomson & Bannister num_supbask_to_suppyrRS = 20 num_supbask_to_suppyrFRB = 20 num_supbask_to_supbask = 20 num_supbask_to_supaxax = 20 num_supbask_to_supLTS = 20 num_supbask_to_spinstell = 20 num_supaxax_to_suppyrRS = 20 // note num_supaxax_to_suppyrFRB = 20 // note num_supaxax_to_spinstell = 5 num_supaxax_to_tuftIB = 5 num_supaxax_to_tuftRS = 5 num_supaxax_to_nontuftRS = 5 num_supLTS_to_suppyrRS = 20 num_supLTS_to_suppyrFRB = 20 num_supLTS_to_supbask = 20 num_supLTS_to_supaxax = 20 num_supLTS_to_supLTS = 20 num_supLTS_to_spinstell = 20 num_supLTS_to_tuftIB = 20 num_supLTS_to_tuftRS = 20 num_supLTS_to_deepbask = 20 num_supLTS_to_deepaxax = 20 num_supLTS_to_deepLTS = 20 num_supLTS_to_nontuftRS = 20 num_spinstell_to_suppyrRS = 20 num_spinstell_to_suppyrFRB= 20 num_spinstell_to_supbask = 20 num_spinstell_to_supaxax = 20 num_spinstell_to_supLTS = 20 num_spinstell_to_spinstell= 30 num_spinstell_to_tuftIB = 20 num_spinstell_to_tuftRS = 20 num_spinstell_to_deepbask = 20 num_spinstell_to_deepaxax = 20 num_spinstell_to_deepLTS = 20 num_spinstell_to_nontuftRS= 20 // num_tuftIB_to_suppyrRS = 20 num_tuftIB_to_suppyrRS = 2 // small per Thomson Bannister // num_tuftIB_to_suppyrFRB = 20 num_tuftIB_to_suppyrFRB = 2 // small per Thomson Bannister num_tuftIB_to_supbask = 20 num_tuftIB_to_supaxax = 20 num_tuftIB_to_supLTS = 20 num_tuftIB_to_spinstell = 20 num_tuftIB_to_tuftIB = 50 num_tuftIB_to_tuftRS = 20 num_tuftIB_to_deepbask = 20 num_tuftIB_to_deepaxax = 20 num_tuftIB_to_deepLTS = 20 num_tuftIB_to_nontuftRS = 20 // num_tuftRS_to_suppyrRS = 20 num_tuftRS_to_suppyrRS = 2 // small per Thomson Bannister // num_tuftRS_to_suppyrFRB = 20 num_tuftRS_to_suppyrFRB = 2 // small per Thomson Bannister num_tuftRS_to_supbask = 20 num_tuftRS_to_supaxax = 20 num_tuftRS_to_supLTS = 20 num_tuftRS_to_spinstell = 20 num_tuftRS_to_tuftIB = 20 num_tuftRS_to_tuftRS = 10 num_tuftRS_to_deepbask = 20 num_tuftRS_to_deepaxax = 20 num_tuftRS_to_deepLTS = 20 num_tuftRS_to_nontuftRS = 20 num_deepbask_to_spinstell = 20 num_deepbask_to_tuftIB = 20 num_deepbask_to_tuftRS = 20 num_deepbask_to_deepbask = 20 num_deepbask_to_deepaxax = 20 num_deepbask_to_deepLTS = 20 num_deepbask_to_nontuftRS = 20 num_deepaxax_to_suppyrRS = 5 num_deepaxax_to_suppyrFRB = 5 num_deepaxax_to_spinstell = 5 num_deepaxax_to_tuftIB = 5 num_deepaxax_to_tuftRS = 5 num_deepaxax_to_nontuftRS = 5 num_deepLTS_to_suppyrRS = 10 num_deepLTS_to_suppyrFRB = 10 num_deepLTS_to_supbask = 10 num_deepLTS_to_supaxax = 10 num_deepLTS_to_supLTS = 10 num_deepLTS_to_spinstell = 20 num_deepLTS_to_tuftIB = 20 num_deepLTS_to_tuftRS = 20 num_deepLTS_to_deepbask = 20 num_deepLTS_to_deepaxax = 20 num_deepLTS_to_deepLTS = 20 num_deepLTS_to_nontuftRS = 20 num_TCR_to_suppyrRS = 10 num_TCR_to_suppyrFRB = 10 num_TCR_to_supbask = 10 num_TCR_to_supaxax = 10 // num_TCR_to_spinstell = 10 num_TCR_to_spinstell = 20 num_TCR_to_tuftIB = 10 num_TCR_to_tuftRS = 10 // num_TCR_to_deepbask = 10 num_TCR_to_deepbask = 20 num_TCR_to_deepaxax = 10 num_TCR_to_nRT = 25 // note num_TCR_to_nontuftRS = 10 num_nRT_to_TCR = 15 // note num_nRT_to_nRT = 10 num_nontuftRS_to_suppyrRS = 10 num_nontuftRS_to_suppyrFRB= 10 num_nontuftRS_to_supbask = 10 num_nontuftRS_to_supaxax = 10 num_nontuftRS_to_supLTS = 10 num_nontuftRS_to_spinstell= 10 num_nontuftRS_to_tuftIB = 10 num_nontuftRS_to_tuftRS = 10 num_nontuftRS_to_deepbask = 10 num_nontuftRS_to_deepaxax = 10 num_nontuftRS_to_deepLTS = 10 num_nontuftRS_to_TCR = 20 num_nontuftRS_to_nRT = 20 num_nontuftRS_to_nontuftRS= 20 // Begin definition of number of compartments that can be // contacted for each type of synaptic connection. ncompallow_suppyrRS_to_suppyrRS = 36 ncompallow_suppyrRS_to_suppyrFRB = 36 ncompallow_suppyrRS_to_supbask = 24 ncompallow_suppyrRS_to_supaxax = 24 ncompallow_suppyrRS_to_supLTS = 24 ncompallow_suppyrRS_to_spinstell = 24 ncompallow_suppyrRS_to_tuftIB = 8 ncompallow_suppyrRS_to_tuftRS = 8 ncompallow_suppyrRS_to_deepbask = 24 ncompallow_suppyrRS_to_deepaxax = 24 ncompallow_suppyrRS_to_deepLTS = 24 ncompallow_suppyrRS_to_nontuftRS = 7 ncompallow_suppyrFRB_to_suppyrRS = 36 ncompallow_suppyrFRB_to_suppyrFRB = 36 ncompallow_suppyrFRB_to_supbask = 24 ncompallow_suppyrFRB_to_supaxax = 24 ncompallow_suppyrFRB_to_supLTS = 24 ncompallow_suppyrFRB_to_spinstell = 24 ncompallow_suppyrFRB_to_tuftIB = 8 ncompallow_suppyrFRB_to_tuftRS = 8 ncompallow_suppyrFRB_to_deepbask = 24 ncompallow_suppyrFRB_to_deepaxax = 24 ncompallow_suppyrFRB_to_deepLTS = 24 ncompallow_suppyrFRB_to_nontuftRS = 7 ncompallow_supbask_to_suppyrRS = 11 ncompallow_supbask_to_suppyrFRB = 11 ncompallow_supbask_to_supbask = 24 ncompallow_supbask_to_supaxax = 24 ncompallow_supbask_to_supLTS = 24 ncompallow_supbask_to_spinstell = 5 ncompallow_supLTS_to_suppyrRS = 53 ncompallow_supLTS_to_suppyrFRB = 53 ncompallow_supLTS_to_supbask = 40 ncompallow_supLTS_to_supaxax = 40 ncompallow_supLTS_to_supLTS = 40 ncompallow_supLTS_to_spinstell = 40 ncompallow_supLTS_to_tuftIB = 40 ncompallow_supLTS_to_tuftRS = 40 ncompallow_supLTS_to_deepbask = 20 ncompallow_supLTS_to_deepaxax = 20 ncompallow_supLTS_to_deepLTS = 20 ncompallow_supLTS_to_nontuftRS = 29 ncompallow_spinstell_to_suppyrRS = 24 ncompallow_spinstell_to_suppyrFRB = 24 ncompallow_spinstell_to_supbask = 24 ncompallow_spinstell_to_supaxax = 24 ncompallow_spinstell_to_supLTS = 24 ncompallow_spinstell_to_spinstell = 24 ncompallow_spinstell_to_tuftIB = 12 ncompallow_spinstell_to_tuftRS = 12 ncompallow_spinstell_to_deepbask = 24 ncompallow_spinstell_to_deepaxax = 24 ncompallow_spinstell_to_deepLTS = 24 ncompallow_spinstell_to_nontuftRS = 5 ncompallow_tuftIB_to_suppyrRS = 13 ncompallow_tuftIB_to_suppyrFRB = 13 ncompallow_tuftIB_to_supbask = 24 ncompallow_tuftIB_to_supaxax = 24 ncompallow_tuftIB_to_supLTS = 24 ncompallow_tuftIB_to_spinstell = 24 ncompallow_tuftIB_to_tuftIB = 46 ncompallow_tuftIB_to_tuftRS = 46 ncompallow_tuftIB_to_deepbask = 24 ncompallow_tuftIB_to_deepaxax = 24 ncompallow_tuftIB_to_deepLTS = 24 ncompallow_tuftIB_to_nontuftRS = 43 ncompallow_tuftRS_to_suppyrRS = 13 ncompallow_tuftRS_to_suppyrFRB = 13 ncompallow_tuftRS_to_supbask = 24 ncompallow_tuftRS_to_supaxax = 24 ncompallow_tuftRS_to_supLTS = 24 ncompallow_tuftRS_to_spinstell = 24 ncompallow_tuftRS_to_tuftIB = 46 ncompallow_tuftRS_to_tuftRS = 46 ncompallow_tuftRS_to_deepbask = 24 ncompallow_tuftRS_to_deepaxax = 24 ncompallow_tuftRS_to_deepLTS = 24 ncompallow_tuftRS_to_nontuftRS = 43 ncompallow_deepbask_to_spinstell = 5 ncompallow_deepbask_to_tuftIB = 8 ncompallow_deepbask_to_tuftRS = 8 ncompallow_deepbask_to_deepbask = 24 ncompallow_deepbask_to_deepaxax = 24 ncompallow_deepbask_to_deepLTS = 24 ncompallow_deepbask_to_nontuftRS = 8 ncompallow_deepLTS_to_suppyrRS = 53 ncompallow_deepLTS_to_suppyrFRB = 53 ncompallow_deepLTS_to_supbask = 20 ncompallow_deepLTS_to_supaxax = 20 ncompallow_deepLTS_to_supLTS = 20 ncompallow_deepLTS_to_spinstell = 40 ncompallow_deepLTS_to_tuftIB = 40 ncompallow_deepLTS_to_tuftRS = 40 ncompallow_deepLTS_to_deepbask = 40 ncompallow_deepLTS_to_deepaxax = 40 ncompallow_deepLTS_to_deepLTS = 40 ncompallow_deepLTS_to_nontuftRS = 29 ncompallow_TCR_to_suppyrRS = 24 ncompallow_TCR_to_suppyrFRB = 24 ncompallow_TCR_to_supbask = 12 ncompallow_TCR_to_supaxax = 12 ncompallow_TCR_to_spinstell = 52 ncompallow_TCR_to_tuftIB = 9 ncompallow_TCR_to_tuftRS = 9 ncompallow_TCR_to_deepbask = 12 ncompallow_TCR_to_deepaxax = 12 ncompallow_TCR_to_nRT = 12 ncompallow_TCR_to_nontuftRS = 5 ncompallow_nRT_to_TCR = 11 ncompallow_nRT_to_nRT = 53 ncompallow_nontuftRS_to_suppyrRS = 4 ncompallow_nontuftRS_to_suppyrFRB = 4 ncompallow_nontuftRS_to_supbask = 24 ncompallow_nontuftRS_to_supaxax = 24 ncompallow_nontuftRS_to_supLTS = 24 ncompallow_nontuftRS_to_spinstell = 24 ncompallow_nontuftRS_to_tuftIB = 46 ncompallow_nontuftRS_to_tuftRS = 46 ncompallow_nontuftRS_to_deepbask = 24 ncompallow_nontuftRS_to_deepaxax = 24 ncompallow_nontuftRS_to_deepLTS = 24 ncompallow_nontuftRS_to_TCR = 90 ncompallow_nontuftRS_to_nRT = 12 ncompallow_nontuftRS_to_nontuftRS = 43 // End definition of number of allowed compartments that // can be contacted for each sort of connection // Note that gj form only between cells of a given type // except suppyrRS/suppyrFRB tuftIB/tuftRS // gj/cell = 2 x total gj / # cells // for proportions see /home/traub/supergj/tests.f totaxgj_suppyrRS = 722 totaxgj_suppyrFRB = 4 totaxgj_suppyr = 74 // totaxgj_suppyr = number of "mixed" gj between RS suppyr // (1st col. of table) and FRB suppyr (3rd col. of table) cells totSDgj_supbask = 200 totSDgj_supaxax = 0 totSDgj_supLTS = 200 totaxgj_spinstell = 240 totaxgj_tuftIB = 350 totaxgj_tuftRS = 350 // totaxgj_tuft = 350 totaxgj_tuft = 10 // decr. antidr. bursts in IB // totaxgj_tuft for mixed gj between tuftIB (1st) and tuftRS (next) totaxgj_nontuftRS = 500 totSDgj_deepbask = 250 totSDgj_deepaxax = 0 totSDgj_deepLTS = 250 totaxgj_TCR = 100 totSDgj_nRT = 250 // Note: no gj between axoaxonic cells. // Define number of compartments on a cell where a gj might form num_axgjcompallow_suppyrRS = 1 num_axgjcompallow_suppyrFRB= 1 num_SDgjcompallow_supbask = 8 num_SDgjcompallow_supLTS = 8 num_axgjcompallow_spinstell= 1 num_axgjcompallow_tuftIB = 1 num_axgjcompallow_tuftRS = 1 num_axgjcompallow_nontuftRS= 1 num_SDgjcompallow_deepbask = 8 num_SDgjcompallow_deepLTS = 8 num_axgjcompallow_TCR = 1 num_SDgjcompallow_nRT = 8 // for NEURON conversion do gap junctions need to be multiplied by a conversion // factor? What is the conversion factor? // Define gap junction conductances. gapcon_suppyrRS = 3.e-3 // gapcon_suppyrRS = 0.e-3 // to see if superf. lay. can follow 40 Hz gapcon_suppyrFRB = 3.e-3 // gapcon_suppyrFRB = 0.e-3 // to see if superf. lay. can follow 40 Hz gapcon_supbask = 1.e-3 gapcon_supaxax = 0.e-3 gapcon_supLTS = 1.e-3 gapcon_spinstell = 3.e-3 // gapcon_spinstell = 0.e-3 // to see if ctx follows 40 Hz from thal. gapcon_tuftIB = 4.e-3 // gapcon_tuftIB = 0.e-3 // to decr. antidr. bursting gapcon_tuftRS = 4.e-3 // gapcon_tuftRS = 0.e-3 // now follow 40 Hz? gapcon_nontuftRS = 4.e-3 // gapcon_nontuftRS = 0.e-3 // to abolish VFO in lay. 6 gapcon_deepbask = 1.e-3 gapcon_deepaxax = 0.e-3 gapcon_deepLTS = 1.e-3 // gapcon_TCR = 3.e-3 gapcon_TCR = 0.e-3 gapcon_nRT = 1.e-3 // Assorted s dt = 0.002e0 Mg = 1.50 // Castro-Alamancos J Physiol disinhib. neocortex in vitro uses // Mg = 1.3 NMDA_saturation_fact= 80.e0 // = 5.e0 // NMDA conductance developed on one postsynaptic compartment // from one type of presynaptic cell can be at most this // factor x unitary conductance // UNFORTUNATELY with this scheme,if one NMDA cond. set to 0 // on a cell type, all NMDA conductances will be forced to 0 // on that cell type... thal_cort_delay = 1.e0 cort_thal_delay = 5.e0 how_often = 50 // how_often defines how many time steps between synaptic conductance // updates, and between broadcastings of axonal voltages. axon_refrac_time = 1.5e0 // For these ectopic rate s, assume noisepe checked // every 200 time steps = 0.4 ms = 1./2.5 ms noisepe_suppyrRS = 1.e0 / (2.5e0 * 10000.e0) // 1.d0 / (2.5e0 * 1000.e0) // USUAL noisepe_suppyrFRB = 1.e0 / (2.5e0 * 10000.e0) // 1.d0 / (2.5e0 * 1000.e0) // USUAL noisepe_spinstell = 1.0 / (2.5e0 * 1000.e0) noisepe_tuftIB = 1.0 / (2.5e0 * 1000.e0) noisepe_tuftRS = 1.0 / (2.5e0 * 1000.e0) noisepe_nontuftRS = 1.0 / (2.5e0 * 1000.e0) noisepe_TCR = 1.0 / (2.5e0 * 1000.e0) // Synaptic conductance time constants. tauAMPA_suppyrRS_to_suppyrRS=2.e0 tauNMDA_suppyrRS_to_suppyrRS=130.5e0 tauAMPA_suppyrRS_to_suppyrFRB=2.e0 tauNMDA_suppyrRS_to_suppyrFRB=130.e0 tauAMPA_suppyrRS_to_supbask =.8e0 tauNMDA_suppyrRS_to_supbask =100.e0 tauAMPA_suppyrRS_to_supaxax =.8e0 tauNMDA_suppyrRS_to_supaxax =100.e0 tauAMPA_suppyrRS_to_supLTS =1.e0 tauNMDA_suppyrRS_to_supLTS =100.e0 tauAMPA_suppyrRS_to_spinstell=2.e0 tauNMDA_suppyrRS_to_spinstell=130.e0 tauAMPA_suppyrRS_to_tuftIB =2.e0 tauNMDA_suppyrRS_to_tuftIB =130.e0 tauAMPA_suppyrRS_to_tuftRS =2.e0 tauNMDA_suppyrRS_to_tuftRS =130.e0 tauAMPA_suppyrRS_to_deepbask =.8e0 tauNMDA_suppyrRS_to_deepbask =100.e0 tauAMPA_suppyrRS_to_deepaxax =.8e0 tauNMDA_suppyrRS_to_deepaxax =100.e0 tauAMPA_suppyrRS_to_deepLTS =1.e0 tauNMDA_suppyrRS_to_deepLTS =100.e0 tauAMPA_suppyrRS_to_nontuftRS=2.e0 tauNMDA_suppyrRS_to_nontuftRS=130.e0 tauAMPA_suppyrFRB_to_suppyrRS=2.e0 tauNMDA_suppyrFRB_to_suppyrRS=130.e0 tauAMPA_suppyrFRB_to_suppyrFRB=2.e0 tauNMDA_suppyrFRB_to_suppyrFRB=130.e0 tauAMPA_suppyrFRB_to_supbask =.8e0 tauNMDA_suppyrFRB_to_supbask =100.e0 tauAMPA_suppyrFRB_to_supaxax =.8e0 tauNMDA_suppyrFRB_to_supaxax =100.e0 tauAMPA_suppyrFRB_to_supLTS =1.e0 tauNMDA_suppyrFRB_to_supLTS =100.e0 tauAMPA_suppyrFRB_to_spinstell=2.e0 tauNMDA_suppyrFRB_to_spinstell=130.e0 tauAMPA_suppyrFRB_to_tuftIB =2.e0 tauNMDA_suppyrFRB_to_tuftIB =130.e0 tauAMPA_suppyrFRB_to_tuftRS =2.e0 tauNMDA_suppyrFRB_to_tuftRS =130.e0 tauAMPA_suppyrFRB_to_deepbask =.8e0 tauNMDA_suppyrFRB_to_deepbask =100.e0 tauAMPA_suppyrFRB_to_deepaxax =.8e0 tauNMDA_suppyrFRB_to_deepaxax =100.e0 tauAMPA_suppyrFRB_to_deepLTS =1.e0 tauNMDA_suppyrFRB_to_deepLTS =100.e0 tauAMPA_suppyrFRB_to_nontuftRS=2.e0 tauNMDA_suppyrFRB_to_nontuftRS=130.e0 tauGABA_supbask_to_suppyrRS =6.e0 tauGABA_supbask_to_suppyrFRB =6.e0 tauGABA_supbask_to_supbask =3.e0 tauGABA_supbask_to_supaxax =3.e0 tauGABA_supbask_to_supLTS =3.e0 tauGABA_supbask_to_spinstell =6.e0 tauGABA_supaxax_to_suppyrRS =6.e0 tauGABA_supaxax_to_suppyrFRB =6.e0 tauGABA_supaxax_to_spinstell =6.e0 tauGABA_supaxax_to_tuftIB =6.e0 tauGABA_supaxax_to_tuftRS =6.e0 tauGABA_supaxax_to_nontuftRS =6.e0 tauGABA_supLTS_to_suppyrRS =20.e0 tauGABA_supLTS_to_suppyrFRB =20.e0 tauGABA_supLTS_to_supbask =20.e0 tauGABA_supLTS_to_supaxax =20.e0 tauGABA_supLTS_to_supLTS =20.e0 tauGABA_supLTS_to_spinstell =20.e0 tauGABA_supLTS_to_tuftIB =20.e0 tauGABA_supLTS_to_tuftRS =20.e0 tauGABA_supLTS_to_deepbask =20.e0 tauGABA_supLTS_to_deepaxax =20.e0 tauGABA_supLTS_to_deepLTS =20.e0 tauGABA_supLTS_to_nontuftRS =20.e0 tauAMPA_spinstell_to_suppyrRS =2.e0 tauNMDA_spinstell_to_suppyrRS =130.e0 tauAMPA_spinstell_to_suppyrFRB=2.e0 tauNMDA_spinstell_to_suppyrFRB=130.e0 tauAMPA_spinstell_to_supbask =.8e0 tauNMDA_spinstell_to_supbask =100.e0 tauAMPA_spinstell_to_supaxax =.8e0 tauNMDA_spinstell_to_supaxax =100.e0 tauAMPA_spinstell_to_supLTS =1.e0 tauNMDA_spinstell_to_supLTS =100.e0 tauAMPA_spinstell_to_spinstell=2.e0 tauNMDA_spinstell_to_spinstell=130.e0 tauAMPA_spinstell_to_tuftIB =2.e0 tauNMDA_spinstell_to_tuftIB =130.e0 tauAMPA_spinstell_to_tuftRS =2.e0 tauNMDA_spinstell_to_tuftRS =130.e0 tauAMPA_spinstell_to_deepbask =.8e0 tauNMDA_spinstell_to_deepbask =100.e0 tauAMPA_spinstell_to_deepaxax =.8e0 tauNMDA_spinstell_to_deepaxax =100.e0 tauAMPA_spinstell_to_deepLTS =1.e0 tauNMDA_spinstell_to_deepLTS =100.e0 tauAMPA_spinstell_to_nontuftRS=2.e0 tauNMDA_spinstell_to_nontuftRS=130.e0 tauAMPA_tuftIB_to_suppyrRS =2.e0 tauNMDA_tuftIB_to_suppyrRS =130.e0 tauAMPA_tuftIB_to_suppyrFRB =2.e0 tauNMDA_tuftIB_to_suppyrFRB =130.e0 tauAMPA_tuftIB_to_supbask =.8e0 tauNMDA_tuftIB_to_supbask =100.e0 tauAMPA_tuftIB_to_supaxax =.8e0 tauNMDA_tuftIB_to_supaxax =100.e0 tauAMPA_tuftIB_to_supLTS =1.e0 tauNMDA_tuftIB_to_supLTS =100.e0 tauAMPA_tuftIB_to_spinstell =2.e0 tauNMDA_tuftIB_to_spinstell =130.e0 tauAMPA_tuftIB_to_tuftIB =2.e0 tauNMDA_tuftIB_to_tuftIB =130.e0 tauAMPA_tuftIB_to_tuftRS =2.0e0 tauNMDA_tuftIB_to_tuftRS =130.e0 tauAMPA_tuftIB_to_deepbask =.8e0 tauNMDA_tuftIB_to_deepbask =100.e0 tauAMPA_tuftIB_to_deepaxax =.8e0 tauNMDA_tuftIB_to_deepaxax =100.e0 tauAMPA_tuftIB_to_deepLTS =1.e0 tauNMDA_tuftIB_to_deepLTS =100.e0 tauAMPA_tuftIB_to_nontuftRS =2.0e0 tauNMDA_tuftIB_to_nontuftRS =130.e0 tauAMPA_tuftRS_to_suppyrRS =2.e0 tauNMDA_tuftRS_to_suppyrRS =130.e0 tauAMPA_tuftRS_to_suppyrFRB =2.e0 tauNMDA_tuftRS_to_suppyrFRB =130.e0 tauAMPA_tuftRS_to_supbask =.8e0 tauNMDA_tuftRS_to_supbask =100.e0 tauAMPA_tuftRS_to_supaxax =.8e0 tauNMDA_tuftRS_to_supaxax =100.e0 tauAMPA_tuftRS_to_supLTS =1.e0 tauNMDA_tuftRS_to_supLTS =100.e0 tauAMPA_tuftRS_to_spinstell =2.e0 tauNMDA_tuftRS_to_spinstell =130.e0 tauAMPA_tuftRS_to_tuftIB =2.e0 tauNMDA_tuftRS_to_tuftIB =130.e0 tauAMPA_tuftRS_to_tuftRS =2.e0 tauNMDA_tuftRS_to_tuftRS =130.e0 tauAMPA_tuftRS_to_deepbask =.8e0 tauNMDA_tuftRS_to_deepbask =100.e0 tauAMPA_tuftRS_to_deepaxax =.8e0 tauNMDA_tuftRS_to_deepaxax =100.e0 tauAMPA_tuftRS_to_deepLTS =1.e0 tauNMDA_tuftRS_to_deepLTS =100.e0 tauAMPA_tuftRS_to_nontuftRS =2.e0 tauNMDA_tuftRS_to_nontuftRS =130.e0 tauGABA_deepbask_to_spinstell =6.e0 tauGABA_deepbask_to_tuftIB =6.e0 tauGABA_deepbask_to_tuftRS =6.e0 tauGABA_deepbask_to_deepbask =3.e0 tauGABA_deepbask_to_deepaxax =3.e0 tauGABA_deepbask_to_deepLTS =3.e0 tauGABA_deepbask_to_nontuftRS =6.e0 tauGABA_deepaxax_to_suppyrRS =6.e0 tauGABA_deepaxax_to_suppyrFRB =6.e0 tauGABA_deepaxax_to_spinstell =6.e0 tauGABA_deepaxax_to_tuftIB =6.e0 tauGABA_deepaxax_to_tuftRS =6.e0 tauGABA_deepaxax_to_nontuftRS =6.e0 tauGABA_deepLTS_to_suppyrRS =20.e0 tauGABA_deepLTS_to_suppyrFRB =20.e0 tauGABA_deepLTS_to_supbask =20.e0 tauGABA_deepLTS_to_supaxax =20.e0 tauGABA_deepLTS_to_supLTS =20.e0 tauGABA_deepLTS_to_spinstell =20.e0 tauGABA_deepLTS_to_tuftIB =20.e0 tauGABA_deepLTS_to_tuftRS =20.e0 tauGABA_deepLTS_to_deepbask =20.e0 tauGABA_deepLTS_to_deepaxax =20.e0 tauGABA_deepLTS_to_deepLTS =20.e0 tauGABA_deepLTS_to_nontuftRS =20.e0 tauAMPA_TCR_to_suppyrRS =2.e0 tauNMDA_TCR_to_suppyrRS =130.e0 tauAMPA_TCR_to_suppyrFRB =2.e0 tauNMDA_TCR_to_suppyrFRB =130.e0 tauAMPA_TCR_to_supbask =1.e0 tauNMDA_TCR_to_supbask =100.e0 tauAMPA_TCR_to_supaxax =1.e0 tauNMDA_TCR_to_supaxax =100.e0 tauAMPA_TCR_to_spinstell =2.0e0 tauNMDA_TCR_to_spinstell =130.e0 tauAMPA_TCR_to_tuftIB =2.e0 tauNMDA_TCR_to_tuftIB =130.e0 tauAMPA_TCR_to_tuftRS =2.e0 tauNMDA_TCR_to_tuftRS =130.e0 tauAMPA_TCR_to_deepbask =1.e0 tauNMDA_TCR_to_deepbask =100.e0 tauAMPA_TCR_to_deepaxax =1.e0 tauNMDA_TCR_to_deepaxax =100.e0 tauAMPA_TCR_to_nRT =2.0e0 tauNMDA_TCR_to_nRT =150.e0 tauAMPA_TCR_to_nontuftRS =2.0e0 tauNMDA_TCR_to_nontuftRS =130.e0 // tauGABA1_nRT_to_TCR =10.e0 // tauGABA2_nRT_to_TCR =30.e0 // tauGABA1_nRT_to_nRT =18.e0 // tauGABA2_nRT_to_nRT =89.e0 // See notebook entry of 17 Feb. 2004. // Speed these up per Huntsman & Huguenard (2000) tauGABA1_nRT_to_TCR =3.30e0 tauGABA2_nRT_to_TCR =10.e0 tauGABA1_nRT_to_nRT = 9.e0 tauGABA2_nRT_to_nRT =44.5e0 tauAMPA_nontuftRS_to_suppyrRS =2.e0 tauNMDA_nontuftRS_to_suppyrRS =130.e0 tauAMPA_nontuftRS_to_suppyrFRB =2.e0 tauNMDA_nontuftRS_to_suppyrFRB =130.e0 tauAMPA_nontuftRS_to_supbask =.8e0 tauNMDA_nontuftRS_to_supbask =100.e0 tauAMPA_nontuftRS_to_supaxax =.8e0 tauNMDA_nontuftRS_to_supaxax =100.e0 tauAMPA_nontuftRS_to_supLTS =1.0e0 tauNMDA_nontuftRS_to_supLTS =100.e0 tauAMPA_nontuftRS_to_spinstell =2.e0 tauNMDA_nontuftRS_to_spinstell =130.e0 tauAMPA_nontuftRS_to_tuftIB =2.e0 tauNMDA_nontuftRS_to_tuftIB =130.e0 tauAMPA_nontuftRS_to_tuftRS =2.e0 tauNMDA_nontuftRS_to_tuftRS =130.e0 tauAMPA_nontuftRS_to_deepbask =.8e0 tauNMDA_nontuftRS_to_deepbask =100.e0 tauAMPA_nontuftRS_to_deepaxax =.8e0 tauNMDA_nontuftRS_to_deepaxax =100.e0 tauAMPA_nontuftRS_to_deepLTS =1.e0 tauNMDA_nontuftRS_to_deepLTS =100.e0 tauAMPA_nontuftRS_to_TCR =2.e0 tauNMDA_nontuftRS_to_TCR =130.e0 tauAMPA_nontuftRS_to_nRT =2.0e0 tauNMDA_nontuftRS_to_nRT =100.e0 tauAMPA_nontuftRS_to_nontuftRS =2.e0 tauNMDA_nontuftRS_to_nontuftRS =130.e0 // End definition of synaptic time constants // Synaptic conductance scaling factors. gAMPA_suppyrRS_to_suppyrRS =0.25e-3 gNMDA_suppyrRS_to_suppyrRS = 0.025e-3 gAMPA_suppyrRS_to_suppyrFRB = 0.25e-3 gNMDA_suppyrRS_to_suppyrFRB = 0.025e-3 gAMPA_suppyrRS_to_supbask =3.00e-3 gNMDA_suppyrRS_to_supbask =0.15e-3 gAMPA_suppyrRS_to_supaxax =3.0e-3 gNMDA_suppyrRS_to_supaxax =0.15e-3 gAMPA_suppyrRS_to_supLTS =2.0e-3 gNMDA_suppyrRS_to_supLTS =0.15e-3 gAMPA_suppyrRS_to_spinstell = 0.10e-3 gNMDA_suppyrRS_to_spinstell = 0.01e-3 gAMPA_suppyrRS_to_tuftIB =0.10e-3 gNMDA_suppyrRS_to_tuftIB =0.01e-3 gAMPA_suppyrRS_to_tuftRS =0.10e-3 gNMDA_suppyrRS_to_tuftRS =0.01e-3 gAMPA_suppyrRS_to_deepbask =1.00e-3 gNMDA_suppyrRS_to_deepbask =0.10e-3 gAMPA_suppyrRS_to_deepaxax =1.00e-3 gNMDA_suppyrRS_to_deepaxax =0.10e-3 gAMPA_suppyrRS_to_deepLTS =1.00e-3 gNMDA_suppyrRS_to_deepLTS =0.15e-3 gAMPA_suppyrRS_to_nontuftRS = 0.50e-3 gNMDA_suppyrRS_to_nontuftRS = 0.05e-3 gAMPA_suppyrFRB_to_suppyrRS = 0.25e-3 gNMDA_suppyrFRB_to_suppyrRS = 0.025e-3 gAMPA_suppyrFRB_to_suppyrFRB = 0.25e-3 gNMDA_suppyrFRB_to_suppyrFRB = .025e-3 gAMPA_suppyrFRB_to_supbask =3.00e-3 gNMDA_suppyrFRB_to_supbask =0.10e-3 gAMPA_suppyrFRB_to_supaxax =3.0e-3 gNMDA_suppyrFRB_to_supaxax =0.10e-3 gAMPA_suppyrFRB_to_supLTS =2.0e-3 gNMDA_suppyrFRB_to_supLTS =0.10e-3 gAMPA_suppyrFRB_to_spinstell = 0.10e-3 gNMDA_suppyrFRB_to_spinstell = 0.01e-3 gAMPA_suppyrFRB_to_tuftIB =0.10e-3 gNMDA_suppyrFRB_to_tuftIB =0.01e-3 gAMPA_suppyrFRB_to_tuftRS =0.10e-3 gNMDA_suppyrFRB_to_tuftRS =0.01e-3 gAMPA_suppyrFRB_to_deepbask =1.00e-3 gNMDA_suppyrFRB_to_deepbask =0.10e-3 gAMPA_suppyrFRB_to_deepaxax =1.00e-3 gNMDA_suppyrFRB_to_deepaxax =0.10e-3 gAMPA_suppyrFRB_to_deepLTS =1.00e-3 gNMDA_suppyrFRB_to_deepLTS =0.10e-3 gAMPA_suppyrFRB_to_nontuftRS = 0.50e-3 gNMDA_suppyrFRB_to_nontuftRS = 0.05e-3 gGABA_supbask_to_suppyrRS =1.2e-3 gGABA_supbask_to_suppyrFRB =1.2e-3 gGABA_supbask_to_supbask =0.2e-3 gGABA_supbask_to_supaxax =0.2e-3 gGABA_supbask_to_supLTS =0.5e-3 // gGABA_supbask_to_spinstell =0.7e-3 gGABA_supbask_to_spinstell =0.1e-3 // if main inhib. to spinstell from deep int. gGABA_supaxax_to_suppyrRS =1.2e-3 gGABA_supaxax_to_suppyrFRB =1.2e-3 // gGABA_supaxax_to_spinstell =1.0e-3 gGABA_supaxax_to_spinstell =0.1e-3 // if main inhib. to spinstell from deep int. gGABA_supaxax_to_tuftIB =1.0e-3 gGABA_supaxax_to_tuftRS =1.0e-3 gGABA_supaxax_to_nontuftRS =1.0e-3 gGABA_supLTS_to_suppyrRS =.01e-3 gGABA_supLTS_to_suppyrFRB =.01e-3 gGABA_supLTS_to_supbask =.01e-3 gGABA_supLTS_to_supaxax =.01e-3 gGABA_supLTS_to_supLTS =.05e-3 gGABA_supLTS_to_spinstell =.01e-3 gGABA_supLTS_to_tuftIB =.02e-3 gGABA_supLTS_to_tuftRS =.02e-3 gGABA_supLTS_to_deepbask =.01e-3 gGABA_supLTS_to_deepaxax =.01e-3 gGABA_supLTS_to_deepLTS =.05e-3 gGABA_supLTS_to_nontuftRS =.01e-3 gAMPA_spinstell_to_suppyrRS =1.0e-3 gNMDA_spinstell_to_suppyrRS =0.1e-3 gAMPA_spinstell_to_suppyrFRB = 1.0e-3 gNMDA_spinstell_to_suppyrFRB = 0.1e-3 gAMPA_spinstell_to_supbask =1.0e-3 gNMDA_spinstell_to_supbask =.15e-3 gAMPA_spinstell_to_supaxax =1.0e-3 gNMDA_spinstell_to_supaxax =.15e-3 gAMPA_spinstell_to_supLTS =1.0e-3 gNMDA_spinstell_to_supLTS =.15e-3 gAMPA_spinstell_to_spinstell = 1.0e-3 gNMDA_spinstell_to_spinstell = 0.1e-3 gAMPA_spinstell_to_tuftIB =1.0e-3 gNMDA_spinstell_to_tuftIB =0.1e-3 gAMPA_spinstell_to_tuftRS =1.0e-3 gNMDA_spinstell_to_tuftRS =0.1e-3 gAMPA_spinstell_to_deepbask =1.0e-3 gNMDA_spinstell_to_deepbask =.15e-3 gAMPA_spinstell_to_deepaxax =1.0e-3 gNMDA_spinstell_to_deepaxax =.15e-3 gAMPA_spinstell_to_deepLTS =1.0e-3 gNMDA_spinstell_to_deepLTS =.15e-3 gAMPA_spinstell_to_nontuftRS = 1.0e-3 gNMDA_spinstell_to_nontuftRS = 0.1e-3 gAMPA_tuftIB_to_suppyrRS =0.5e-3 gNMDA_tuftIB_to_suppyrRS =0.05e-3 gAMPA_tuftIB_to_suppyrFRB =0.5e-3 gNMDA_tuftIB_to_suppyrFRB =0.05e-3 gAMPA_tuftIB_to_supbask =1.0e-3 gNMDA_tuftIB_to_supbask =0.15e-3 gAMPA_tuftIB_to_supaxax =1.0e-3 gNMDA_tuftIB_to_supaxax =0.15e-3 gAMPA_tuftIB_to_supLTS =1.0e-3 gNMDA_tuftIB_to_supLTS =0.15e-3 gAMPA_tuftIB_to_spinstell =0.5e-3 gNMDA_tuftIB_to_spinstell =0.05e-3 gAMPA_tuftIB_to_tuftIB =2.0e-3 gNMDA_tuftIB_to_tuftIB =0.20e-3 gAMPA_tuftIB_to_tuftRS =2.0e-3 gNMDA_tuftIB_to_tuftRS =0.20e-3 gAMPA_tuftIB_to_deepbask =3.0e-3 gNMDA_tuftIB_to_deepbask =0.15e-3 gAMPA_tuftIB_to_deepaxax =3.0e-3 gNMDA_tuftIB_to_deepaxax =0.15e-3 gAMPA_tuftIB_to_deepLTS =2.0e-3 gNMDA_tuftIB_to_deepLTS =0.15e-3 gAMPA_tuftIB_to_nontuftRS =2.0e-3 gNMDA_tuftIB_to_nontuftRS =0.20e-3 gAMPA_tuftRS_to_suppyrRS =0.5e-3 gNMDA_tuftRS_to_suppyrRS =0.05e-3 gAMPA_tuftRS_to_suppyrFRB =0.5e-3 gNMDA_tuftRS_to_suppyrFRB =0.05e-3 gAMPA_tuftRS_to_supbask =1.0e-3 gNMDA_tuftRS_to_supbask =0.15e-3 gAMPA_tuftRS_to_supaxax =1.0e-3 gNMDA_tuftRS_to_supaxax =0.15e-3 gAMPA_tuftRS_to_supLTS =1.0e-3 gNMDA_tuftRS_to_supLTS =0.15e-3 gAMPA_tuftRS_to_spinstell =0.5e-3 gNMDA_tuftRS_to_spinstell =0.05e-3 gAMPA_tuftRS_to_tuftIB =1.0e-3 gNMDA_tuftRS_to_tuftIB =0.10e-3 gAMPA_tuftRS_to_tuftRS =1.0e-3 gNMDA_tuftRS_to_tuftRS =0.10e-3 gAMPA_tuftRS_to_deepbask =3.0e-3 gNMDA_tuftRS_to_deepbask =0.10e-3 gAMPA_tuftRS_to_deepaxax =3.0e-3 gNMDA_tuftRS_to_deepaxax =0.10e-3 gAMPA_tuftRS_to_deepLTS =2.0e-3 gNMDA_tuftRS_to_deepLTS =0.10e-3 gAMPA_tuftRS_to_nontuftRS =1.0e-3 gNMDA_tuftRS_to_nontuftRS =0.10e-3 // gGABA_deepbask_to_spinstell =1.0e-3 gGABA_deepbask_to_spinstell =1.5e-3 // ? suppress spiny stellate bursts ? gGABA_deepbask_to_tuftIB =0.7e-3 gGABA_deepbask_to_tuftRS =0.7e-3 gGABA_deepbask_to_deepbask =0.2e-3 gGABA_deepbask_to_deepaxax =0.2e-3 gGABA_deepbask_to_deepLTS =0.7e-3 gGABA_deepbask_to_nontuftRS =0.7e-3 gGABA_deepaxax_to_suppyrRS =1.0e-3 gGABA_deepaxax_to_suppyrFRB =1.0e-3 // gGABA_deepaxax_to_spinstell =1.0e-3 gGABA_deepaxax_to_spinstell =1.5e-3 // ? suppress spiny stellate bursts ? gGABA_deepaxax_to_tuftIB =1.0e-3 gGABA_deepaxax_to_tuftRS =1.0e-3 gGABA_deepaxax_to_nontuftRS =1.0e-3 gGABA_deepLTS_to_suppyrRS =.01e-3 gGABA_deepLTS_to_suppyrFRB =.01e-3 gGABA_deepLTS_to_supbask =.01e-3 gGABA_deepLTS_to_supaxax =.01e-3 gGABA_deepLTS_to_supLTS =.05e-3 gGABA_deepLTS_to_spinstell =.01e-3 // gGABA_deepLTS_to_tuftIB =.02e-3 gGABA_deepLTS_to_tuftIB =.05e-3 // will this help suppress bursting? gGABA_deepLTS_to_tuftRS =.02e-3 gGABA_deepLTS_to_deepbask =.01e-3 gGABA_deepLTS_to_deepaxax =.01e-3 gGABA_deepLTS_to_deepLTS =.05e-3 gGABA_deepLTS_to_nontuftRS =.01e-3 gAMPA_TCR_to_suppyrRS =0.5e-3 gNMDA_TCR_to_suppyrRS =0.05e-3 gAMPA_TCR_to_suppyrFRB =0.5e-3 gNMDA_TCR_to_suppyrFRB =0.05e-3 // gAMPA_TCR_to_supbask =1.0e-3 gAMPA_TCR_to_supbask =0.1e-3 // try a variation in which main feedforward inhibtion from thalamus // is via deep interneurons. May be necessary later to include special // layer 4 interneurons // gNMDA_TCR_to_supbask =.10e-3 gNMDA_TCR_to_supbask =.01e-3 // gAMPA_TCR_to_supaxax =1.0e-3 gAMPA_TCR_to_supaxax =0.1e-3 // gNMDA_TCR_to_supaxax =.10e-3 gNMDA_TCR_to_supaxax =.01e-3 gAMPA_TCR_to_spinstell =1.0e-3 gNMDA_TCR_to_spinstell =.10e-3 gAMPA_TCR_to_tuftIB =1.5e-3 gNMDA_TCR_to_tuftIB =.15e-3 gAMPA_TCR_to_tuftRS =1.5e-3 gNMDA_TCR_to_tuftRS =.15e-3 // gAMPA_TCR_to_deepbask =1.0e-3 gAMPA_TCR_to_deepbask =1.5e-3 gNMDA_TCR_to_deepbask =.10e-3 gAMPA_TCR_to_deepaxax =1.0e-3 gNMDA_TCR_to_deepaxax =.10e-3 gAMPA_TCR_to_nRT =0.75e-3 gNMDA_TCR_to_nRT =.15e-3 gAMPA_TCR_to_nontuftRS =1.0e-3 gNMDA_TCR_to_nontuftRS =.10e-3 // gGABA_nRT_to_TCR =1.0e-3 objref gGABA_nRT_to_TCR gGABA_nRT_to_TCR = new Vector(num_nRT+1) // Values here need to be set below gGABA_nRT_to_nRT =0.30e-3 gAMPA_nontuftRS_to_suppyrRS =0.5e-3 gNMDA_nontuftRS_to_suppyrRS =0.05e-3 gAMPA_nontuftRS_to_suppyrFRB =0.5e-3 gNMDA_nontuftRS_to_suppyrFRB =0.05e-3 gAMPA_nontuftRS_to_supbask =1.0e-3 gNMDA_nontuftRS_to_supbask =0.1e-3 gAMPA_nontuftRS_to_supaxax =1.0e-3 gNMDA_nontuftRS_to_supaxax =0.1e-3 gAMPA_nontuftRS_to_supLTS =1.0e-3 gNMDA_nontuftRS_to_supLTS =0.1e-3 gAMPA_nontuftRS_to_spinstell =0.5e-3 gNMDA_nontuftRS_to_spinstell =0.05e-3 gAMPA_nontuftRS_to_tuftIB =1.0e-3 gNMDA_nontuftRS_to_tuftIB =0.1e-3 gAMPA_nontuftRS_to_tuftRS =1.0e-3 gNMDA_nontuftRS_to_tuftRS =0.1e-3 gAMPA_nontuftRS_to_deepbask =3.0e-3 gNMDA_nontuftRS_to_deepbask =.10e-3 gAMPA_nontuftRS_to_deepaxax =3.0e-3 gNMDA_nontuftRS_to_deepaxax =.10e-3 gAMPA_nontuftRS_to_deepLTS =2.0e-3 gNMDA_nontuftRS_to_deepLTS =.10e-3 gAMPA_nontuftRS_to_TCR =.75e-3 gNMDA_nontuftRS_to_TCR =.075e-3 gAMPA_nontuftRS_to_nRT =0.5e-3 gNMDA_nontuftRS_to_nRT =0.05e-3 gAMPA_nontuftRS_to_nontuftRS =1.0e-3 gNMDA_nontuftRS_to_nontuftRS =0.1e-3 // End defining synaptic conductance scaling factors // Begin definition of compartments where synaptic connections // can form. // Note: many of these arrays used to be INTEGER in FORTRAN. Since all // arrays in NEURON are double that is why they are now double. // all the plus ones added to the array bounds allow the use of FORTRAN // index bounds (starting at 1 instead of 0) objref compallow_suppyrRS_to_suppyrRS compallow_suppyrRS_to_suppyrRS = new Vector() {compallow_suppyrRS_to_suppyrRS.append(0.1, 2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,26, \ 27,28,29,30,31,32,33,10,11,12,13,22,23,24,25, \ 34,35,36,37)} objref compallow_suppyrRS_to_suppyrFRB compallow_suppyrRS_to_suppyrFRB=new Vector() {compallow_suppyrRS_to_suppyrFRB.append(0.1, 2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,26, \ 27,28,29,30,31,32,33,10,11,12,13,22,23,24,25, \ 34,35,36,37)} objref compallow_suppyrRS_to_supbask compallow_suppyrRS_to_supbask=new Vector() {compallow_suppyrRS_to_supbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrRS_to_supaxax compallow_suppyrRS_to_supaxax=new Vector() {compallow_suppyrRS_to_supaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrRS_to_supLTS compallow_suppyrRS_to_supLTS=new Vector() {compallow_suppyrRS_to_supLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrRS_to_spinstell compallow_suppyrRS_to_spinstell=new Vector() {compallow_suppyrRS_to_spinstell.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrRS_to_tuftIB compallow_suppyrRS_to_tuftIB=new Vector() {compallow_suppyrRS_to_tuftIB.append(0.1, 39,40,41,42,43,44,45,46)} objref compallow_suppyrRS_to_tuftRS compallow_suppyrRS_to_tuftRS=new Vector() {compallow_suppyrRS_to_tuftRS.append(0.1, 39,40,41,42,43,44,45,46)} objref compallow_suppyrRS_to_deepbask compallow_suppyrRS_to_deepbask=new Vector() {compallow_suppyrRS_to_deepbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrRS_to_deepaxax compallow_suppyrRS_to_deepaxax=new Vector() {compallow_suppyrRS_to_deepaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrRS_to_deepLTS compallow_suppyrRS_to_deepLTS=new Vector() {compallow_suppyrRS_to_deepLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrRS_to_nontuftRS compallow_suppyrRS_to_nontuftRS=new Vector() {compallow_suppyrRS_to_nontuftRS.append(0.1, 38,39,40,41,42,43,44)} objref compallow_suppyrFRB_to_suppyrRS compallow_suppyrFRB_to_suppyrRS=new Vector() {compallow_suppyrFRB_to_suppyrRS.append(0.1, 2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,26, \ 27,28,29,30,31,32,33,10,11,12,13,22,23,24,25, \ 34,35,36,37)} objref compallow_suppyrFRB_to_suppyrFRB compallow_suppyrFRB_to_suppyrFRB=new Vector() {compallow_suppyrFRB_to_suppyrFRB.append(0.1, 2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,26, \ 27,28,29,30,31,32,33,10,11,12,13,22,23,24,25,\ 34,35,36,37)} objref compallow_suppyrFRB_to_supbask compallow_suppyrFRB_to_supbask=new Vector() {compallow_suppyrFRB_to_supbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrFRB_to_supaxax compallow_suppyrFRB_to_supaxax=new Vector() {compallow_suppyrFRB_to_supaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrFRB_to_supLTS compallow_suppyrFRB_to_supLTS=new Vector() {compallow_suppyrFRB_to_supLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrFRB_to_spinstell compallow_suppyrFRB_to_spinstell=new Vector() {compallow_suppyrFRB_to_spinstell.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrFRB_to_tuftIB compallow_suppyrFRB_to_tuftIB=new Vector() {compallow_suppyrFRB_to_tuftIB.append(0.1, 39,40,41,42,43,44,45,46)} objref compallow_suppyrFRB_to_tuftRS compallow_suppyrFRB_to_tuftRS=new Vector() {compallow_suppyrFRB_to_tuftRS.append(0.1, 39,40,41,42,43,44,45,46)} objref compallow_suppyrFRB_to_deepbask compallow_suppyrFRB_to_deepbask=new Vector() {compallow_suppyrFRB_to_deepbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrFRB_to_deepaxax compallow_suppyrFRB_to_deepaxax=new Vector() {compallow_suppyrFRB_to_deepaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrFRB_to_deepLTS compallow_suppyrFRB_to_deepLTS=new Vector() {compallow_suppyrFRB_to_deepLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_suppyrFRB_to_nontuftRS compallow_suppyrFRB_to_nontuftRS=new Vector() {compallow_suppyrFRB_to_nontuftRS.append(0.1, 38,39,40,41,42,43,44)} objref compallow_supbask_to_suppyrRS compallow_supbask_to_suppyrRS=new Vector() {compallow_supbask_to_suppyrRS.append(0.1, 1,2,3,4,5,6,7,8,9,38,39)} objref compallow_supbask_to_suppyrFRB compallow_supbask_to_suppyrFRB=new Vector() {compallow_supbask_to_suppyrFRB.append(0.1, 1,2,3,4,5,6,7,8,9,38,39)} objref compallow_supbask_to_supbask compallow_supbask_to_supbask=new Vector() {compallow_supbask_to_supbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_supbask_to_supaxax compallow_supbask_to_supaxax=new Vector() {compallow_supbask_to_supaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_supbask_to_supLTS compallow_supbask_to_supLTS=new Vector() {compallow_supbask_to_supLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_supbask_to_spinstell compallow_supbask_to_spinstell=new Vector() {compallow_supbask_to_spinstell.append(0.1, 1,2,15,28,41)} objref compallow_supLTS_to_suppyrRS compallow_supLTS_to_suppyrRS=new Vector() {compallow_supLTS_to_suppyrRS.append(0.1, 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, \ 31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49, \ 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66, \ 67,68)} objref compallow_supLTS_to_suppyrFRB compallow_supLTS_to_suppyrFRB=new Vector() {compallow_supLTS_to_suppyrFRB.append(0.1, 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, \ 31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49, \ 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66, \ 67,68)} objref compallow_supLTS_to_supbask compallow_supLTS_to_supbask=new Vector() {compallow_supLTS_to_supbask.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_supLTS_to_supaxax compallow_supLTS_to_supaxax=new Vector() {compallow_supLTS_to_supaxax.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_supLTS_to_supLTS compallow_supLTS_to_supLTS=new Vector() {compallow_supLTS_to_supLTS.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_supLTS_to_spinstell compallow_supLTS_to_spinstell=new Vector() {compallow_supLTS_to_spinstell.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_supLTS_to_tuftIB compallow_supLTS_to_tuftIB=new Vector() {compallow_supLTS_to_tuftIB.append(0.1, 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, \ 29,30,31,32,33,34,38,39,40,41,42,43,44,45,46,47, \ 48,49,50,51,52,53,54,55)} objref compallow_supLTS_to_tuftRS compallow_supLTS_to_tuftRS=new Vector() {compallow_supLTS_to_tuftRS.append(0.1, 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, \ 29,30,31,32,33,34,38,39,40,41,42,43,44,45,46,47, \ 48,49,50,51,52,53,54,55)} objref compallow_supLTS_to_deepbask compallow_supLTS_to_deepbask=new Vector() {compallow_supLTS_to_deepbask.append(0.1, 8,9,10,11,12,21,22,23,24,25,34,35,36,37,38, \ 47,48,49,50,51)} objref compallow_supLTS_to_deepaxax compallow_supLTS_to_deepaxax=new Vector() {compallow_supLTS_to_deepaxax.append(0.1, 8,9,10,11,12,21,22,23,24,25,34,35,36,37,38, \ 47,48,49,50,51)} objref compallow_supLTS_to_deepLTS compallow_supLTS_to_deepLTS=new Vector() {compallow_supLTS_to_deepLTS.append(0.1, 8,9,10,11,12,21,22,23,24,25,34,35,36,37,38, \ 47,48,49,50,51)} objref compallow_supLTS_to_nontuftRS compallow_supLTS_to_nontuftRS=new Vector() {compallow_supLTS_to_nontuftRS.append(0.1, 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, \ 29,30,31,32,33,34,38,39,40,41,42,43,44)} // objref compallow_spinstell_to_suppyrRS // compallow_spinstell_to_suppyrRS=new Vector() // {compallow_spinstell_to_suppyrRS.append(0.1, 40,41,42,43,44,45,46,47,48,49,50,51,52)} // objref compallow_spinstell_to_suppyrFRB // compallow_spinstell_to_suppyrFRB=new Vector() // {compallow_spinstell_to_suppyrFRB.append(0.1, 40,41,42,43,44,45,46,47,48,49,50,51,52)} // 3 Mar. 2004: Feldmeyer, ..., Sakmann, J Physiol 2002 assert // that in barrel ctx, spiny stellates go to basal dendrites of // layer 2/3 pyramids objref compallow_spinstell_to_suppyrRS compallow_spinstell_to_suppyrRS=new Vector() {compallow_spinstell_to_suppyrRS.append(0.1, 2, 3, 4, 5, 6, 7, 8, 9,14,15,16,17,18,19,20,21, \ 26,27,28,29,30,31,32,33)} objref compallow_spinstell_to_suppyrFRB compallow_spinstell_to_suppyrFRB=new Vector() {compallow_spinstell_to_suppyrFRB.append(0.1, 2, 3, 4, 5, 6, 7, 8, 9,14,15,16,17,18,19,20,21, \ 26,27,28,29,30,31,32,33)} objref compallow_spinstell_to_supbask compallow_spinstell_to_supbask=new Vector() {compallow_spinstell_to_supbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_spinstell_to_supaxax compallow_spinstell_to_supaxax=new Vector() {compallow_spinstell_to_supaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_spinstell_to_supLTS compallow_spinstell_to_supLTS=new Vector() {compallow_spinstell_to_supLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_spinstell_to_spinstell compallow_spinstell_to_spinstell=new Vector() {compallow_spinstell_to_spinstell.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_spinstell_to_tuftIB compallow_spinstell_to_tuftIB=new Vector() {compallow_spinstell_to_tuftIB.append(0.1, 7,8,9,10,11,12,36,37,38,39,40,41)} objref compallow_spinstell_to_tuftRS compallow_spinstell_to_tuftRS=new Vector() {compallow_spinstell_to_tuftRS.append(0.1, 7,8,9,10,11,12,36,37,38,39,40,41)} objref compallow_spinstell_to_deepbask compallow_spinstell_to_deepbask=new Vector() {compallow_spinstell_to_deepbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_spinstell_to_deepaxax compallow_spinstell_to_deepaxax=new Vector() {compallow_spinstell_to_deepaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_spinstell_to_deepLTS compallow_spinstell_to_deepLTS=new Vector() {compallow_spinstell_to_deepLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_spinstell_to_nontuftRS compallow_spinstell_to_nontuftRS=new Vector() {compallow_spinstell_to_nontuftRS.append(0.1, 37,38,39,40,41)} objref compallow_tuftIB_to_suppyrRS compallow_tuftIB_to_suppyrRS=new Vector() {compallow_tuftIB_to_suppyrRS.append(0.1, 40,41,42,43,44,45,46,47,48,49,50,51,52)} objref compallow_tuftIB_to_suppyrFRB compallow_tuftIB_to_suppyrFRB=new Vector() {compallow_tuftIB_to_suppyrFRB.append(0.1, 40,41,42,43,44,45,46,47,48,49,50,51,52)} objref compallow_tuftIB_to_supbask compallow_tuftIB_to_supbask=new Vector() {compallow_tuftIB_to_supbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftIB_to_supaxax compallow_tuftIB_to_supaxax=new Vector() {compallow_tuftIB_to_supaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftIB_to_supLTS compallow_tuftIB_to_supLTS=new Vector() {compallow_tuftIB_to_supLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftIB_to_spinstell compallow_tuftIB_to_spinstell=new Vector() {compallow_tuftIB_to_spinstell.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftIB_to_tuftIB compallow_tuftIB_to_tuftIB=new Vector() {compallow_tuftIB_to_tuftIB.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, \ 38,39,40,41,42,43,44,45,46,47)} objref compallow_tuftIB_to_tuftRS compallow_tuftIB_to_tuftRS=new Vector() {compallow_tuftIB_to_tuftRS.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, \ 38,39,40,41,42,43,44,45,46,47)} objref compallow_tuftIB_to_deepbask compallow_tuftIB_to_deepbask=new Vector() {compallow_tuftIB_to_deepbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftIB_to_deepaxax compallow_tuftIB_to_deepaxax=new Vector() {compallow_tuftIB_to_deepaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftIB_to_deepLTS compallow_tuftIB_to_deepLTS=new Vector() {compallow_tuftIB_to_deepLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftIB_to_nontuftRS compallow_tuftIB_to_nontuftRS=new Vector() {compallow_tuftIB_to_nontuftRS.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36, \ 37,38,39,40,41,42,43,44)} objref compallow_tuftRS_to_suppyrRS compallow_tuftRS_to_suppyrRS=new Vector() {compallow_tuftRS_to_suppyrRS.append(0.1, 40,41,42,43,44,45,46,47,48,49,50,51,52)} objref compallow_tuftRS_to_suppyrFRB compallow_tuftRS_to_suppyrFRB=new Vector() {compallow_tuftRS_to_suppyrFRB.append(0.1, 40,41,42,43,44,45,46,47,48,49,50,51,52)} objref compallow_tuftRS_to_supbask compallow_tuftRS_to_supbask=new Vector() {compallow_tuftRS_to_supbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftRS_to_supaxax compallow_tuftRS_to_supaxax=new Vector() {compallow_tuftRS_to_supaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftRS_to_supLTS compallow_tuftRS_to_supLTS=new Vector() {compallow_tuftRS_to_supLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftRS_to_spinstell compallow_tuftRS_to_spinstell=new Vector() {compallow_tuftRS_to_spinstell.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftRS_to_tuftIB compallow_tuftRS_to_tuftIB=new Vector() {compallow_tuftRS_to_tuftIB.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, \ 38,39,40,41,42,43,44,45,46,47)} objref compallow_tuftRS_to_tuftRS compallow_tuftRS_to_tuftRS=new Vector() {compallow_tuftRS_to_tuftRS.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, \ 38,39,40,41,42,43,44,45,46,47)} objref compallow_tuftRS_to_deepbask compallow_tuftRS_to_deepbask=new Vector() {compallow_tuftRS_to_deepbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftRS_to_deepaxax compallow_tuftRS_to_deepaxax=new Vector() {compallow_tuftRS_to_deepaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftRS_to_deepLTS compallow_tuftRS_to_deepLTS=new Vector() {compallow_tuftRS_to_deepLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_tuftRS_to_nontuftRS compallow_tuftRS_to_nontuftRS=new Vector() {compallow_tuftRS_to_nontuftRS.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36, \ 37,38,39,40,41,42,43,44)} objref compallow_deepbask_to_spinstell compallow_deepbask_to_spinstell=new Vector() {compallow_deepbask_to_spinstell.append(0.1, 1,2,15,28,41)} objref compallow_deepbask_to_tuftIB compallow_deepbask_to_tuftIB=new Vector() {compallow_deepbask_to_tuftIB.append(0.1, 1,2,3,4,5,6,35,36)} objref compallow_deepbask_to_tuftRS compallow_deepbask_to_tuftRS=new Vector() {compallow_deepbask_to_tuftRS.append(0.1, 1,2,3,4,5,6,35,36)} objref compallow_deepbask_to_deepbask compallow_deepbask_to_deepbask=new Vector() {compallow_deepbask_to_deepbask.append(0.1,5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_deepbask_to_deepaxax compallow_deepbask_to_deepaxax=new Vector() {compallow_deepbask_to_deepaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_deepbask_to_deepLTS compallow_deepbask_to_deepLTS=new Vector() {compallow_deepbask_to_deepLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_deepbask_to_nontuftRS compallow_deepbask_to_nontuftRS=new Vector() {compallow_deepbask_to_nontuftRS.append(0.1, 1,2,3,4,5,6,35,36)} objref compallow_deepLTS_to_suppyrRS compallow_deepLTS_to_suppyrRS=new Vector() {compallow_deepLTS_to_suppyrRS.append(0.1, 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, \ 31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49, \ 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66, \ 67,68)} objref compallow_deepLTS_to_suppyrFRB compallow_deepLTS_to_suppyrFRB=new Vector() {compallow_deepLTS_to_suppyrFRB.append(0.1, 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, \ 31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,48,49, \ 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66, \ 67,68)} objref compallow_deepLTS_to_supbask compallow_deepLTS_to_supbask=new Vector() {compallow_deepLTS_to_supbask.append(0.1, 8,9,10,11,12,21,22,23,24,25,34,35,36,37,38, \ 47,48,49,50,51)} objref compallow_deepLTS_to_supaxax compallow_deepLTS_to_supaxax=new Vector() {compallow_deepLTS_to_supaxax.append(0.1, 8,9,10,11,12,21,22,23,24,25,34,35,36,37,38, \ 47,48,49,50,51)} objref compallow_deepLTS_to_supLTS compallow_deepLTS_to_supLTS=new Vector() {compallow_deepLTS_to_supLTS.append(0.1, 8,9,10,11,12,21,22,23,24,25,34,35,36,37,38, \ 47,48,49,50,51)} objref compallow_deepLTS_to_spinstell compallow_deepLTS_to_spinstell=new Vector() {compallow_deepLTS_to_spinstell.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_deepLTS_to_tuftIB compallow_deepLTS_to_tuftIB=new Vector() {compallow_deepLTS_to_tuftIB.append(0.1, 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, \ 29,30,31,32,33,34,38,39,40,41,42,43,44,45,46,47, \ 48,49,50,51,52,53,54,55)} objref compallow_deepLTS_to_tuftRS compallow_deepLTS_to_tuftRS=new Vector() {compallow_deepLTS_to_tuftRS.append(0.1, 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, \ 29,30,31,32,33,34,38,39,40,41,42,43,44,45,46,47, \ 48,49,50,51,52,53,54,55)} objref compallow_deepLTS_to_deepbask compallow_deepLTS_to_deepbask=new Vector() {compallow_deepLTS_to_deepbask.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_deepLTS_to_deepaxax compallow_deepLTS_to_deepaxax=new Vector() {compallow_deepLTS_to_deepaxax.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_deepLTS_to_deepLTS compallow_deepLTS_to_deepLTS=new Vector() {compallow_deepLTS_to_deepLTS.append(0.1, 5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25, \ 26,27,31,32,33,34,35,36,37,38,39,40, \ 44,45,46,47,48,49,50,51,52,53)} objref compallow_deepLTS_to_nontuftRS compallow_deepLTS_to_nontuftRS=new Vector() {compallow_deepLTS_to_nontuftRS.append(0.1, 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, \ 29,30,31,32,33,34,38,39,40,41,42,43,44)} objref compallow_TCR_to_suppyrRS compallow_TCR_to_suppyrRS=new Vector() {compallow_TCR_to_suppyrRS.append(0.1, 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60, \ 61,62,63,64,65,66,67,68)} objref compallow_TCR_to_suppyrFRB compallow_TCR_to_suppyrFRB=new Vector() {compallow_TCR_to_suppyrFRB.append(0.1, 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60, \ 61,62,63,64,65,66,67,68)} objref compallow_TCR_to_supbask compallow_TCR_to_supbask=new Vector() {compallow_TCR_to_supbask.append(0.1, 2,3,4,15,16,17,28,29,30,41,42,43)} objref compallow_TCR_to_supaxax compallow_TCR_to_supaxax=new Vector() {compallow_TCR_to_supaxax.append(0.1, 2,3,4,15,16,17,28,29,30,41,42,43)} objref compallow_TCR_to_spinstell compallow_TCR_to_spinstell=new Vector() {compallow_TCR_to_spinstell.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36, \ 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53)} objref compallow_TCR_to_tuftIB compallow_TCR_to_tuftIB=new Vector() {compallow_TCR_to_tuftIB.append(0.1, 47,48,49,50,51,52,53,54,55)} objref compallow_TCR_to_tuftRS compallow_TCR_to_tuftRS=new Vector() {compallow_TCR_to_tuftRS.append(0.1, 47,48,49,50,51,52,53,54,55)} objref compallow_TCR_to_deepbask compallow_TCR_to_deepbask=new Vector() {compallow_TCR_to_deepbask.append(0.1, 2,3,4,15,16,17,28,29,30,41,42,43)} objref compallow_TCR_to_deepaxax compallow_TCR_to_deepaxax=new Vector() {compallow_TCR_to_deepaxax.append(0.1, 2,3,4,15,16,17,28,29,30,41,42,43)} objref compallow_TCR_to_nRT compallow_TCR_to_nRT=new Vector() {compallow_TCR_to_nRT.append(0.1, 2,3,4,15,16,17,28,29,30,41,42,43)} objref compallow_TCR_to_nontuftRS compallow_TCR_to_nontuftRS=new Vector() {compallow_TCR_to_nontuftRS.append(0.1, 40,41,42,43,44)} objref compallow_nRT_to_TCR compallow_nRT_to_TCR=new Vector() {compallow_nRT_to_TCR.append(0.1, 1,2,15,28,41,54,67,80,93,106,119)} objref compallow_nRT_to_nRT compallow_nRT_to_nRT=new Vector() {compallow_nRT_to_nRT.append(0.1, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, \ 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35, \ 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51, \ 52,53)} objref compallow_nontuftRS_to_suppyrRS compallow_nontuftRS_to_suppyrRS=new Vector() {compallow_nontuftRS_to_suppyrRS.append(0.1, 41,42,43,44 )} objref compallow_nontuftRS_to_suppyrFRB compallow_nontuftRS_to_suppyrFRB=new Vector() {compallow_nontuftRS_to_suppyrFRB.append(0.1, 41,42,43,44)} objref compallow_nontuftRS_to_supbask compallow_nontuftRS_to_supbask=new Vector() {compallow_nontuftRS_to_supbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_nontuftRS_to_supaxax compallow_nontuftRS_to_supaxax=new Vector() {compallow_nontuftRS_to_supaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_nontuftRS_to_supLTS compallow_nontuftRS_to_supLTS=new Vector() {compallow_nontuftRS_to_supLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_nontuftRS_to_spinstell compallow_nontuftRS_to_spinstell=new Vector() {compallow_nontuftRS_to_spinstell.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_nontuftRS_to_tuftIB compallow_nontuftRS_to_tuftIB=new Vector() {compallow_nontuftRS_to_tuftIB.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, \ 38,39,40,41,42,43,44,45,46,47)} objref compallow_nontuftRS_to_tuftRS compallow_nontuftRS_to_tuftRS=new Vector() {compallow_nontuftRS_to_tuftRS.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, \ 38,39,40,41,42,43,44,45,46,47)} objref compallow_nontuftRS_to_deepbask compallow_nontuftRS_to_deepbask=new Vector() {compallow_nontuftRS_to_deepbask.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_nontuftRS_to_deepaxax compallow_nontuftRS_to_deepaxax=new Vector() {compallow_nontuftRS_to_deepaxax.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_nontuftRS_to_deepLTS compallow_nontuftRS_to_deepLTS=new Vector() {compallow_nontuftRS_to_deepLTS.append(0.1, 5,6,7,8,9,10,18,19,20,21,22,23,31,32,33,34,35,36, \ 44,45,46,47,48,49)} objref compallow_nontuftRS_to_TCR compallow_nontuftRS_to_TCR=new Vector() {compallow_nontuftRS_to_TCR.append(0.1, 6, 7, 8, 9, 10, 11, 12, 13, 14, \ 19, 20, 21, 22, 23, 24, 25, 26, 27, \ 32, 33, 34, 35, 36, 37, 38, 39, 40, \ 45, 46, 47, 48, 49, 50, 51, 52, 53, \ 58, 59, 60, 61, 62, 63, 64, 65, 66, \ 71, 72, 73, 74, 75, 76, 77, 78, 79, \ 84, 85, 86, 87, 88, 89, 90, 91, 92, \ 97, 98, 99,100,101,102,103,104,105, \ 110,111,112,113,114,115,116,117,118, \ 123,124,125,126,127,128,129,130,131)} objref compallow_nontuftRS_to_nRT compallow_nontuftRS_to_nRT=new Vector() {compallow_nontuftRS_to_nRT.append(0.1, 2,3,4,15,16,17,28,29,30,41,42,43)} objref compallow_nontuftRS_to_nontuftRS compallow_nontuftRS_to_nontuftRS=new Vector() {compallow_nontuftRS_to_nontuftRS.append(0.1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36, \ 37,38,39,40,41,42,43,44)} // Maps of synaptic connectivity. For simplicity, all contacts // only made to one compartment. Axoaxonic cells forced to contact // initial axon segments; other compartments will be listed in arrays. objref map_suppyrRS_to_suppyrRS, \ map_suppyrRS_to_suppyrFRB, \ map_suppyrRS_to_supbask, \ map_suppyrRS_to_supaxax, \ map_suppyrRS_to_supLTS, \ map_suppyrRS_to_spinstell, \ map_suppyrRS_to_tuftIB, \ map_suppyrRS_to_tuftRS, \ map_suppyrRS_to_deepbask, \ map_suppyrRS_to_deepaxax, \ map_suppyrRS_to_deepLTS, \ map_suppyrRS_to_nontuftRS, \ map_suppyrFRB_to_suppyrRS map_suppyrRS_to_suppyrRS=new Matrix(num_suppyrRS_to_suppyrRS+1, \ num_suppyrRS+1) map_suppyrRS_to_suppyrFRB=new Matrix(num_suppyrRS_to_suppyrFRB+1, \ num_suppyrFRB+1) map_suppyrRS_to_supbask=new Matrix(num_suppyrRS_to_supbask+1, \ num_supbask+1) map_suppyrRS_to_supaxax=new Matrix(num_suppyrRS_to_supaxax+1, \ num_supaxax+1) map_suppyrRS_to_supLTS=new Matrix(num_suppyrRS_to_supLTS+1 , \ num_supLTS+1) map_suppyrRS_to_spinstell=new Matrix(num_suppyrRS_to_spinstell+1, \ num_spinstell+1) map_suppyrRS_to_tuftIB=new Matrix(num_suppyrRS_to_tuftIB+1, \ num_tuftIB+1) map_suppyrRS_to_tuftRS=new Matrix(num_suppyrRS_to_tuftRS+1, \ num_tuftRS+1) map_suppyrRS_to_deepbask=new Matrix(num_suppyrRS_to_deepbask+1, \ num_deepbask+1) map_suppyrRS_to_deepaxax=new Matrix(num_suppyrRS_to_deepaxax+1, \ num_deepaxax+1) map_suppyrRS_to_deepLTS=new Matrix(num_suppyrRS_to_deepLTS+1, \ num_deepLTS+1) map_suppyrRS_to_nontuftRS=new Matrix(num_suppyrRS_to_nontuftRS+1, \ num_nontuftRS+1) map_suppyrFRB_to_suppyrRS=new Matrix(num_suppyrFRB_to_suppyrRS+1, \ num_suppyrRS+1) objref map_suppyrFRB_to_suppyrFRB, \ map_suppyrFRB_to_supbask, \ map_suppyrFRB_to_supaxax, \ map_suppyrFRB_to_supLTS, \ map_suppyrFRB_to_spinstell, \ map_suppyrFRB_to_tuftIB, \ map_suppyrFRB_to_tuftRS, \ map_suppyrFRB_to_deepbask, \ map_suppyrFRB_to_deepaxax, \ map_suppyrFRB_to_deepLTS, \ map_suppyrFRB_to_nontuftRS, \ map_supbask_to_suppyrRS, \ map_supbask_to_suppyrFRB, \ map_supbask_to_supbask, \ map_supbask_to_supaxax, \ map_supbask_to_supLTS, \ map_supbask_to_spinstell, \ map_supaxax_to_suppyrRS, \ map_supaxax_to_suppyrFRB, \ map_supaxax_to_spinstell, \ map_supaxax_to_tuftIB, \ map_supaxax_to_tuftRS, \ map_supaxax_to_nontuftRS, \ map_supLTS_to_suppyrRS, \ map_supLTS_to_suppyrFRB, \ map_supLTS_to_supbask, \ map_supLTS_to_supaxax, \ map_supLTS_to_supLTS, \ map_supLTS_to_spinstell, \ map_supLTS_to_tuftIB, \ map_supLTS_to_tuftRS, \ map_supLTS_to_deepbask, \ map_supLTS_to_deepaxax, \ map_supLTS_to_deepLTS, \ map_supLTS_to_nontuftRS, \ map_spinstell_to_suppyrRS, \ map_spinstell_to_suppyrFRB, \ map_spinstell_to_supbask map_suppyrFRB_to_suppyrFRB=new Matrix(num_suppyrFRB_to_suppyrFRB+1, \ num_suppyrFRB+1) map_suppyrFRB_to_supbask=new Matrix(num_suppyrFRB_to_supbask+1, \ num_supbask+1) map_suppyrFRB_to_supaxax=new Matrix(num_suppyrFRB_to_supaxax+1, \ num_supaxax+1) map_suppyrFRB_to_supLTS=new Matrix(num_suppyrFRB_to_supLTS+1, \ num_supLTS+1) map_suppyrFRB_to_spinstell=new Matrix(num_suppyrFRB_to_spinstell+1, \ num_spinstell+1) map_suppyrFRB_to_tuftIB=new Matrix(num_suppyrFRB_to_tuftIB+1, \ num_tuftIB+1) map_suppyrFRB_to_tuftRS=new Matrix(num_suppyrFRB_to_tuftRS+1, \ num_tuftRS+1) map_suppyrFRB_to_deepbask=new Matrix(num_suppyrFRB_to_deepbask+1, \ num_deepbask+1) map_suppyrFRB_to_deepaxax=new Matrix(num_suppyrFRB_to_deepaxax+1, \ num_deepaxax+1) map_suppyrFRB_to_deepLTS=new Matrix(num_suppyrFRB_to_deepLTS+1, \ num_deepLTS+1) map_suppyrFRB_to_nontuftRS=new Matrix(num_suppyrFRB_to_nontuftRS+1, \ num_nontuftRS+1) map_supbask_to_suppyrRS=new Matrix(num_supbask_to_suppyrRS+1, \ num_suppyrRS+1) map_supbask_to_suppyrFRB=new Matrix(num_supbask_to_suppyrFRB+1, \ num_suppyrFRB+1) map_supbask_to_supbask=new Matrix(num_supbask_to_supbask+1, \ num_supbask+1) map_supbask_to_supaxax=new Matrix(num_supbask_to_supaxax+1, \ num_supaxax+1) map_supbask_to_supLTS=new Matrix(num_supbask_to_supLTS+1, \ num_supLTS+1) map_supbask_to_spinstell=new Matrix(num_supbask_to_spinstell+1, \ num_spinstell+1) map_supaxax_to_suppyrRS=new Matrix(num_supaxax_to_suppyrRS+1, \ num_suppyrRS+1) map_supaxax_to_suppyrFRB=new Matrix(num_supaxax_to_suppyrFRB+1, \ num_suppyrFRB+1) map_supaxax_to_spinstell=new Matrix(num_supaxax_to_spinstell+1, \ num_spinstell+1) map_supaxax_to_tuftIB=new Matrix(num_supaxax_to_tuftIB+1, \ num_tuftIB+1) map_supaxax_to_tuftRS=new Matrix(num_supaxax_to_tuftRS+1, \ num_tuftRS+1) map_supaxax_to_nontuftRS=new Matrix(num_supaxax_to_nontuftRS+1, \ num_nontuftRS+1) map_supLTS_to_suppyrRS=new Matrix(num_supLTS_to_suppyrRS+1, \ num_suppyrRS+1) map_supLTS_to_suppyrFRB=new Matrix(num_supLTS_to_suppyrFRB+1, \ num_suppyrFRB+1) map_supLTS_to_supbask=new Matrix(num_supLTS_to_supbask+1, \ num_supbask+1) map_supLTS_to_supaxax=new Matrix(num_supLTS_to_supaxax+1, \ num_supaxax+1) map_supLTS_to_supLTS=new Matrix(num_supLTS_to_supLTS+1, \ num_supLTS+1) map_supLTS_to_spinstell=new Matrix(num_supLTS_to_spinstell+1, \ num_spinstell+1) map_supLTS_to_tuftIB=new Matrix(num_supLTS_to_tuftIB+1, \ num_tuftIB+1) map_supLTS_to_tuftRS=new Matrix(num_supLTS_to_tuftRS+1, \ num_tuftRS+1) map_supLTS_to_deepbask=new Matrix(num_supLTS_to_deepbask+1, \ num_deepbask+1) map_supLTS_to_deepaxax=new Matrix(num_supLTS_to_deepaxax+1, \ num_deepaxax+1) map_supLTS_to_deepLTS=new Matrix(num_supLTS_to_deepLTS+1, \ num_deepLTS+1) map_supLTS_to_nontuftRS=new Matrix(num_supLTS_to_nontuftRS+1, \ num_nontuftRS+1) map_spinstell_to_suppyrRS=new Matrix(num_spinstell_to_suppyrRS+1, \ num_suppyrRS+1) map_spinstell_to_suppyrFRB=new Matrix(num_spinstell_to_suppyrFRB+1, \ num_suppyrFRB+1) map_spinstell_to_supbask=new Matrix(num_spinstell_to_supbask+1, \ num_supbask+1) objref map_spinstell_to_supaxax, \ map_spinstell_to_supLTS, \ map_spinstell_to_spinstell, \ map_spinstell_to_tuftIB, \ map_spinstell_to_tuftRS, \ map_spinstell_to_deepbask, \ map_spinstell_to_deepaxax, \ map_spinstell_to_deepLTS, \ map_spinstell_to_nontuftRS, \ map_tuftIB_to_suppyrRS, \ map_tuftIB_to_suppyrFRB, \ map_tuftIB_to_supbask, \ map_tuftIB_to_supaxax, \ map_tuftIB_to_supLTS, \ map_tuftIB_to_spinstell, \ map_tuftIB_to_tuftIB, \ map_tuftIB_to_tuftRS, \ map_tuftIB_to_deepbask, \ map_tuftIB_to_deepaxax, \ map_tuftIB_to_deepLTS, \ map_tuftIB_to_nontuftRS, \ map_tuftRS_to_suppyrRS, \ map_tuftRS_to_suppyrFRB, \ map_tuftRS_to_supbask, \ map_tuftRS_to_supaxax, \ map_tuftRS_to_supLTS map_spinstell_to_supaxax=new Matrix(num_spinstell_to_supaxax+1, \ num_supaxax+1) map_spinstell_to_supLTS=new Matrix(num_spinstell_to_supLTS+1, \ num_supLTS+1) map_spinstell_to_spinstell=new Matrix(num_spinstell_to_spinstell+1, \ num_spinstell+1) map_spinstell_to_tuftIB=new Matrix(num_spinstell_to_tuftIB+1, \ num_tuftIB+1) map_spinstell_to_tuftRS=new Matrix(num_spinstell_to_tuftRS+1, \ num_tuftRS+1) map_spinstell_to_deepbask=new Matrix(num_spinstell_to_deepbask+1, \ num_deepbask+1) map_spinstell_to_deepaxax=new Matrix(num_spinstell_to_deepaxax+1, \ num_deepaxax+1) map_spinstell_to_deepLTS=new Matrix(num_spinstell_to_deepLTS+1, \ num_deepLTS+1) map_spinstell_to_nontuftRS=new Matrix(num_spinstell_to_nontuftRS+1, \ num_nontuftRS+1) map_tuftIB_to_suppyrRS=new Matrix(num_tuftIB_to_suppyrRS+1, \ num_suppyrRS+1) map_tuftIB_to_suppyrFRB=new Matrix(num_tuftIB_to_suppyrFRB+1, \ num_suppyrFRB+1) map_tuftIB_to_supbask=new Matrix(num_tuftIB_to_supbask+1, \ num_supbask+1) map_tuftIB_to_supaxax=new Matrix(num_tuftIB_to_supaxax+1, \ num_supaxax+1) map_tuftIB_to_supLTS=new Matrix(num_tuftIB_to_supLTS+1, \ num_supLTS+1) map_tuftIB_to_spinstell=new Matrix(num_tuftIB_to_spinstell+1, \ num_spinstell+1) map_tuftIB_to_tuftIB=new Matrix(num_tuftIB_to_tuftIB+1, \ num_tuftIB+1) map_tuftIB_to_tuftRS=new Matrix(num_tuftIB_to_tuftRS+1, \ num_tuftRS+1) map_tuftIB_to_deepbask=new Matrix(num_tuftIB_to_deepbask+1, \ num_deepbask+1) map_tuftIB_to_deepaxax=new Matrix(num_tuftIB_to_deepaxax+1, \ num_deepaxax+1) map_tuftIB_to_deepLTS=new Matrix(num_tuftIB_to_deepLTS+1, \ num_deepLTS+1) map_tuftIB_to_nontuftRS=new Matrix(num_tuftIB_to_nontuftRS+1, \ num_nontuftRS+1) map_tuftRS_to_suppyrRS=new Matrix(num_tuftRS_to_suppyrRS+1, \ num_suppyrRS+1) map_tuftRS_to_suppyrFRB=new Matrix(num_tuftRS_to_suppyrFRB+1, \ num_suppyrFRB+1) map_tuftRS_to_supbask=new Matrix(num_tuftRS_to_supbask+1, \ num_supbask+1) map_tuftRS_to_supaxax=new Matrix(num_tuftRS_to_supaxax+1, \ num_supaxax+1) map_tuftRS_to_supLTS=new Matrix(num_tuftRS_to_supLTS+1, \ num_supLTS+1) objref map_tuftRS_to_spinstell, \ map_tuftRS_to_tuftIB, \ map_tuftRS_to_tuftRS, \ map_tuftRS_to_deepbask, \ map_tuftRS_to_deepaxax, \ map_tuftRS_to_deepLTS, \ map_tuftRS_to_nontuftRS, \ map_deepbask_to_spinstell, \ map_deepbask_to_tuftIB, \ map_deepbask_to_tuftRS, \ map_deepbask_to_deepbask, \ map_deepbask_to_deepaxax, \ map_deepbask_to_deepLTS map_tuftRS_to_spinstell=new Matrix(num_tuftRS_to_spinstell+1, \ num_spinstell+1) map_tuftRS_to_tuftIB=new Matrix(num_tuftRS_to_tuftIB+1, \ num_tuftIB+1) map_tuftRS_to_tuftRS=new Matrix(num_tuftRS_to_tuftRS+1, \ num_tuftRS+1) map_tuftRS_to_deepbask=new Matrix(num_tuftRS_to_deepbask+1, \ num_deepbask+1) map_tuftRS_to_deepaxax=new Matrix(num_tuftRS_to_deepaxax+1, \ num_deepaxax+1) map_tuftRS_to_deepLTS=new Matrix(num_tuftRS_to_deepLTS+1, \ num_deepLTS+1) map_tuftRS_to_nontuftRS=new Matrix(num_tuftRS_to_nontuftRS+1, \ num_nontuftRS+1) map_deepbask_to_spinstell=new Matrix(num_deepbask_to_spinstell+1, \ num_spinstell+1) map_deepbask_to_tuftIB=new Matrix(num_deepbask_to_tuftIB+1, \ num_tuftIB+1) map_deepbask_to_tuftRS=new Matrix(num_deepbask_to_tuftRS+1, \ num_tuftRS+1) map_deepbask_to_deepbask=new Matrix(num_deepbask_to_deepbask+1, \ num_deepbask+1) map_deepbask_to_deepaxax=new Matrix(num_deepbask_to_deepaxax+1, \ num_deepaxax+1) map_deepbask_to_deepLTS=new Matrix(num_deepbask_to_deepLTS+1, \ num_deepLTS+1) objref map_deepbask_to_nontuftRS, \ map_deepaxax_to_suppyrRS, \ map_deepaxax_to_suppyrFRB, \ map_deepaxax_to_spinstell, \ map_deepaxax_to_tuftIB, \ map_deepaxax_to_tuftRS, \ map_deepaxax_to_nontuftRS, \ map_deepLTS_to_suppyrRS, \ map_deepLTS_to_suppyrFRB, \ map_deepLTS_to_supbask, \ map_deepLTS_to_supaxax, \ map_deepLTS_to_supLTS, \ map_deepLTS_to_spinstell, \ map_deepLTS_to_tuftIB, \ map_deepLTS_to_tuftRS, \ map_deepLTS_to_deepbask, \ map_deepLTS_to_deepaxax, \ map_deepLTS_to_deepLTS, \ map_deepLTS_to_nontuftRS, \ map_TCR_to_suppyrRS, \ map_TCR_to_suppyrFRB, \ map_TCR_to_supbask map_deepbask_to_nontuftRS=new Matrix(num_deepbask_to_nontuftRS+1, \ num_nontuftRS+1) map_deepaxax_to_suppyrRS=new Matrix(num_deepaxax_to_suppyrRS+1, \ num_suppyrRS+1) map_deepaxax_to_suppyrFRB=new Matrix(num_deepaxax_to_suppyrFRB+1, \ num_suppyrFRB+1) map_deepaxax_to_spinstell=new Matrix(num_deepaxax_to_spinstell+1, \ num_spinstell+1) map_deepaxax_to_tuftIB=new Matrix(num_deepaxax_to_tuftIB+1, \ num_tuftIB+1) map_deepaxax_to_tuftRS=new Matrix(num_deepaxax_to_tuftRS+1, \ num_tuftRS+1) map_deepaxax_to_nontuftRS=new Matrix(num_deepaxax_to_nontuftRS+1, \ num_nontuftRS+1) map_deepLTS_to_suppyrRS=new Matrix(num_deepLTS_to_suppyrRS+1, \ num_suppyrRS+1) map_deepLTS_to_suppyrFRB=new Matrix(num_deepLTS_to_suppyrFRB+1, \ num_suppyrFRB+1) map_deepLTS_to_supbask=new Matrix(num_deepLTS_to_supbask+1, \ num_supbask+1) map_deepLTS_to_supaxax=new Matrix(num_deepLTS_to_supaxax+1, \ num_supaxax+1) map_deepLTS_to_supLTS=new Matrix(num_deepLTS_to_supLTS+1, \ num_supLTS+1) map_deepLTS_to_spinstell=new Matrix(num_deepLTS_to_spinstell+1, \ num_spinstell+1) map_deepLTS_to_tuftIB=new Matrix(num_deepLTS_to_tuftIB+1, \ num_tuftIB+1) map_deepLTS_to_tuftRS=new Matrix(num_deepLTS_to_tuftRS+1, \ num_tuftRS+1) map_deepLTS_to_deepbask=new Matrix(num_deepLTS_to_deepbask+1, \ num_deepbask+1) map_deepLTS_to_deepaxax=new Matrix(num_deepLTS_to_deepaxax+1, \ num_deepaxax+1) map_deepLTS_to_deepLTS=new Matrix(num_deepLTS_to_deepLTS+1, \ num_deepLTS+1) map_deepLTS_to_nontuftRS=new Matrix(num_deepLTS_to_nontuftRS+1, \ num_nontuftRS+1) map_TCR_to_suppyrRS=new Matrix(num_TCR_to_suppyrRS+1, \ num_suppyrRS+1) map_TCR_to_suppyrFRB=new Matrix(num_TCR_to_suppyrFRB+1, \ num_suppyrFRB+1) map_TCR_to_supbask=new Matrix(num_TCR_to_supbask+1, \ num_supbask+1) objref map_TCR_to_supaxax, \ map_TCR_to_spinstell, \ map_TCR_to_tuftIB, \ map_TCR_to_tuftRS, \ map_TCR_to_deepbask, \ map_TCR_to_deepaxax, \ map_TCR_to_nRT, \ map_TCR_to_nontuftRS, \ map_nRT_to_TCR, \ map_nRT_to_nRT map_TCR_to_supaxax=new Matrix(num_TCR_to_supaxax+1, num_supaxax+1) map_TCR_to_spinstell=new Matrix(num_TCR_to_spinstell+1,num_spinstell+1) map_TCR_to_tuftIB=new Matrix(num_TCR_to_tuftIB+1,num_tuftIB+1) map_TCR_to_tuftRS=new Matrix(num_TCR_to_tuftRS+1,num_tuftRS+1) map_TCR_to_deepbask=new Matrix(num_TCR_to_deepbask+1,num_deepbask+1) map_TCR_to_deepaxax=new Matrix(num_TCR_to_deepaxax+1,num_deepaxax+1) map_TCR_to_nRT=new Matrix(num_TCR_to_nRT+1,num_nRT+1) map_TCR_to_nontuftRS=new Matrix(num_TCR_to_nontuftRS+1,num_nontuftRS+1) map_nRT_to_TCR=new Matrix(num_nRT_to_TCR+1,num_TCR+1) map_nRT_to_nRT=new Matrix(num_nRT_to_nRT+1,num_nRT+1) objref map_nontuftRS_to_suppyrRS, \ map_nontuftRS_to_suppyrFRB, \ map_nontuftRS_to_supbask, \ map_nontuftRS_to_supaxax, \ map_nontuftRS_to_supLTS, \ map_nontuftRS_to_spinstell, \ map_nontuftRS_to_tuftIB, \ map_nontuftRS_to_tuftRS, \ map_nontuftRS_to_deepbask, \ map_nontuftRS_to_deepaxax, \ map_nontuftRS_to_deepLTS map_nontuftRS_to_suppyrRS=new Matrix(num_nontuftRS_to_suppyrRS+1, \ num_suppyrRS+1) map_nontuftRS_to_suppyrFRB=new Matrix(num_nontuftRS_to_suppyrFRB+1, \ num_suppyrFRB+1) map_nontuftRS_to_supbask=new Matrix(num_nontuftRS_to_supbask+1, \ num_supbask+1) map_nontuftRS_to_supaxax=new Matrix(num_nontuftRS_to_supaxax+1, \ num_supaxax+1) map_nontuftRS_to_supLTS=new Matrix(num_nontuftRS_to_supLTS+1, \ num_supLTS+1) map_nontuftRS_to_spinstell=new Matrix(num_nontuftRS_to_spinstell+1, \ num_spinstell+1) map_nontuftRS_to_tuftIB=new Matrix(num_nontuftRS_to_tuftIB+1, \ num_tuftIB+1) map_nontuftRS_to_tuftRS=new Matrix(num_nontuftRS_to_tuftRS+1, \ num_tuftRS+1) map_nontuftRS_to_deepbask=new Matrix(num_nontuftRS_to_deepbask+1, \ num_deepbask+1) map_nontuftRS_to_deepaxax=new Matrix(num_nontuftRS_to_deepaxax+1, \ num_deepaxax+1) map_nontuftRS_to_deepLTS=new Matrix(num_nontuftRS_to_deepLTS+1, \ num_deepLTS+1) objref map_nontuftRS_to_TCR, \ map_nontuftRS_to_nRT, \ map_nontuftRS_to_nontuftRS map_nontuftRS_to_TCR=new Matrix(num_nontuftRS_to_TCR+1,num_TCR+1) map_nontuftRS_to_nRT=new Matrix(num_nontuftRS_to_nRT+1,num_nRT+1) map_nontuftRS_to_nontuftRS=new Matrix(num_nontuftRS_to_nontuftRS+1, \ num_nontuftRS+1) // Maps of synaptic compartments. For simplicity+1, all contacts // only made to one compartment. Axoaxonic cells forced to contact // initial axon segments; other compartments will be listed in arrays. objref com_suppyrRS_to_suppyrRS, \ com_suppyrRS_to_suppyrFRB, \ com_suppyrRS_to_supbask, \ com_suppyrRS_to_supaxax, \ com_suppyrRS_to_supLTS, \ com_suppyrRS_to_spinstell, \ com_suppyrRS_to_tuftIB, \ com_suppyrRS_to_tuftRS, \ com_suppyrRS_to_deepbask, \ com_suppyrRS_to_deepaxax, \ com_suppyrRS_to_deepLTS, \ com_suppyrRS_to_nontuftRS, \ com_suppyrFRB_to_suppyrRS com_suppyrRS_to_suppyrRS=new Matrix(num_suppyrRS_to_suppyrRS+1, \ num_suppyrRS+1) com_suppyrRS_to_suppyrFRB=new Matrix(num_suppyrRS_to_suppyrFRB+1, \ num_suppyrFRB+1) com_suppyrRS_to_supbask=new Matrix(num_suppyrRS_to_supbask+1, \ num_supbask+1) com_suppyrRS_to_supaxax=new Matrix(num_suppyrRS_to_supaxax+1, \ num_supaxax+1) com_suppyrRS_to_supLTS=new Matrix(num_suppyrRS_to_supLTS+1 , \ num_supLTS+1) com_suppyrRS_to_spinstell=new Matrix(num_suppyrRS_to_spinstell+1, \ num_spinstell+1) com_suppyrRS_to_tuftIB=new Matrix(num_suppyrRS_to_tuftIB+1, \ num_tuftIB+1) com_suppyrRS_to_tuftRS=new Matrix(num_suppyrRS_to_tuftRS+1, \ num_tuftRS+1) com_suppyrRS_to_deepbask=new Matrix(num_suppyrRS_to_deepbask+1, \ num_deepbask+1) com_suppyrRS_to_deepaxax=new Matrix(num_suppyrRS_to_deepaxax+1, \ num_deepaxax+1) com_suppyrRS_to_deepLTS=new Matrix(num_suppyrRS_to_deepLTS+1, \ num_deepLTS+1) com_suppyrRS_to_nontuftRS=new Matrix(num_suppyrRS_to_nontuftRS+1, \ num_nontuftRS+1) com_suppyrFRB_to_suppyrRS=new Matrix(num_suppyrFRB_to_suppyrRS+1, \ num_suppyrRS+1) objref com_suppyrFRB_to_suppyrFRB, \ com_suppyrFRB_to_supbask, \ com_suppyrFRB_to_supaxax, \ com_suppyrFRB_to_supLTS, \ com_suppyrFRB_to_spinstell, \ com_suppyrFRB_to_tuftIB, \ com_suppyrFRB_to_tuftRS, \ com_suppyrFRB_to_deepbask, \ com_suppyrFRB_to_deepaxax, \ com_suppyrFRB_to_deepLTS, \ com_suppyrFRB_to_nontuftRS, \ com_supbask_to_suppyrRS, \ com_supbask_to_suppyrFRB, \ com_supbask_to_supbask, \ com_supbask_to_supaxax, \ com_supbask_to_supLTS, \ com_supbask_to_spinstell, \ com_supaxax_to_suppyrRS, \ com_supaxax_to_suppyrFRB, \ com_supaxax_to_spinstell com_suppyrFRB_to_suppyrFRB=new Matrix(num_suppyrFRB_to_suppyrFRB+1, \ num_suppyrFRB+1) com_suppyrFRB_to_supbask=new Matrix(num_suppyrFRB_to_supbask+1, \ num_supbask+1) com_suppyrFRB_to_supaxax=new Matrix(num_suppyrFRB_to_supaxax+1, \ num_supaxax+1) com_suppyrFRB_to_supLTS=new Matrix(num_suppyrFRB_to_supLTS+1, \ num_supLTS+1) com_suppyrFRB_to_spinstell=new Matrix(num_suppyrFRB_to_spinstell+1, \ num_spinstell+1) com_suppyrFRB_to_tuftIB=new Matrix(num_suppyrFRB_to_tuftIB+1, \ num_tuftIB+1) com_suppyrFRB_to_tuftRS=new Matrix(num_suppyrFRB_to_tuftRS+1, \ num_tuftRS+1) com_suppyrFRB_to_deepbask=new Matrix(num_suppyrFRB_to_deepbask+1, \ num_deepbask+1) com_suppyrFRB_to_deepaxax=new Matrix(num_suppyrFRB_to_deepaxax+1, \ num_deepaxax+1) com_suppyrFRB_to_deepLTS=new Matrix(num_suppyrFRB_to_deepLTS+1, \ num_deepLTS+1) com_suppyrFRB_to_nontuftRS=new Matrix(num_suppyrFRB_to_nontuftRS+1, \ num_nontuftRS+1) com_supbask_to_suppyrRS=new Matrix(num_supbask_to_suppyrRS+1, \ num_suppyrRS+1) com_supbask_to_suppyrFRB=new Matrix(num_supbask_to_suppyrFRB+1, \ num_suppyrFRB+1) com_supbask_to_supbask=new Matrix(num_supbask_to_supbask+1, \ num_supbask+1) com_supbask_to_supaxax=new Matrix(num_supbask_to_supaxax+1, \ num_supaxax+1) com_supbask_to_supLTS=new Matrix(num_supbask_to_supLTS+1, \ num_supLTS+1) com_supbask_to_spinstell=new Matrix(num_supbask_to_spinstell+1, \ num_spinstell+1) com_supaxax_to_suppyrRS=new Matrix(num_supaxax_to_suppyrRS+1, \ num_suppyrRS+1) com_supaxax_to_suppyrFRB=new Matrix(num_supaxax_to_suppyrFRB+1, \ num_suppyrFRB+1) com_supaxax_to_spinstell=new Matrix(num_supaxax_to_spinstell+1, \ num_spinstell+1) objref com_supaxax_to_tuftIB, \ com_supaxax_to_tuftRS, \ com_supaxax_to_nontuftRS, \ com_supLTS_to_suppyrRS, \ com_supLTS_to_suppyrFRB, \ com_supLTS_to_supbask, \ com_supLTS_to_supaxax, \ com_supLTS_to_supLTS, \ com_supLTS_to_spinstell, \ com_supLTS_to_tuftIB, \ com_supLTS_to_tuftRS, \ com_supLTS_to_deepbask, \ com_supLTS_to_deepaxax, \ com_supLTS_to_deepLTS, \ com_supLTS_to_nontuftRS, \ com_spinstell_to_suppyrRS, \ com_spinstell_to_suppyrFRB, \ com_spinstell_to_supbask, \ com_spinstell_to_supaxax com_supaxax_to_tuftIB=new Matrix(num_supaxax_to_tuftIB+1, \ num_tuftIB+1) com_supaxax_to_tuftRS=new Matrix(num_supaxax_to_tuftRS+1, \ num_tuftRS+1) com_supaxax_to_nontuftRS=new Matrix(num_supaxax_to_nontuftRS+1, \ num_nontuftRS+1) com_supLTS_to_suppyrRS=new Matrix(num_supLTS_to_suppyrRS+1, \ num_suppyrRS+1) com_supLTS_to_suppyrFRB=new Matrix(num_supLTS_to_suppyrFRB+1, \ num_suppyrFRB+1) com_supLTS_to_supbask=new Matrix(num_supLTS_to_supbask+1, \ num_supbask+1) com_supLTS_to_supaxax=new Matrix(num_supLTS_to_supaxax+1, \ num_supaxax+1) com_supLTS_to_supLTS=new Matrix(num_supLTS_to_supLTS+1, \ num_supLTS+1) com_supLTS_to_spinstell=new Matrix(num_supLTS_to_spinstell+1, \ num_spinstell+1) com_supLTS_to_tuftIB=new Matrix(num_supLTS_to_tuftIB+1, \ num_tuftIB+1) com_supLTS_to_tuftRS=new Matrix(num_supLTS_to_tuftRS+1, \ num_tuftRS+1) com_supLTS_to_deepbask=new Matrix(num_supLTS_to_deepbask+1, \ num_deepbask+1) com_supLTS_to_deepaxax=new Matrix(num_supLTS_to_deepaxax+1, \ num_deepaxax+1) com_supLTS_to_deepLTS=new Matrix(num_supLTS_to_deepLTS+1, \ num_deepLTS+1) com_supLTS_to_nontuftRS=new Matrix(num_supLTS_to_nontuftRS+1, \ num_nontuftRS+1) com_spinstell_to_suppyrRS=new Matrix(num_spinstell_to_suppyrRS+1, \ num_suppyrRS+1) com_spinstell_to_suppyrFRB=new Matrix(num_spinstell_to_suppyrFRB+1, \ num_suppyrFRB+1) com_spinstell_to_supbask=new Matrix(num_spinstell_to_supbask+1, \ num_supbask+1) com_spinstell_to_supaxax=new Matrix(num_spinstell_to_supaxax+1, \ num_supaxax+1) objref com_spinstell_to_supLTS, \ com_spinstell_to_spinstell, \ com_spinstell_to_tuftIB, \ com_spinstell_to_tuftRS, \ com_spinstell_to_deepbask, \ com_spinstell_to_deepaxax, \ com_spinstell_to_deepLTS, \ com_spinstell_to_nontuftRS, \ com_tuftIB_to_suppyrRS, \ com_tuftIB_to_suppyrFRB, \ com_tuftIB_to_supbask, \ com_tuftIB_to_supaxax, \ com_tuftIB_to_supLTS, \ com_tuftIB_to_spinstell, \ com_tuftIB_to_tuftIB, \ com_tuftIB_to_tuftRS, \ com_tuftIB_to_deepbask, \ com_tuftIB_to_deepaxax, \ com_tuftIB_to_deepLTS, \ com_tuftIB_to_nontuftRS com_spinstell_to_supLTS=new Matrix(num_spinstell_to_supLTS+1, \ num_supLTS+1) com_spinstell_to_spinstell=new Matrix(num_spinstell_to_spinstell+1, \ num_spinstell+1) com_spinstell_to_tuftIB=new Matrix(num_spinstell_to_tuftIB+1, \ num_tuftIB+1) com_spinstell_to_tuftRS=new Matrix(num_spinstell_to_tuftRS+1, \ num_tuftRS+1) com_spinstell_to_deepbask=new Matrix(num_spinstell_to_deepbask+1, \ num_deepbask+1) com_spinstell_to_deepaxax=new Matrix(num_spinstell_to_deepaxax+1, \ num_deepaxax+1) com_spinstell_to_deepLTS=new Matrix(num_spinstell_to_deepLTS+1, \ num_deepLTS+1) com_spinstell_to_nontuftRS=new Matrix(num_spinstell_to_nontuftRS+1, \ num_nontuftRS+1) com_tuftIB_to_suppyrRS=new Matrix(num_tuftIB_to_suppyrRS+1, \ num_suppyrRS+1) com_tuftIB_to_suppyrFRB=new Matrix(num_tuftIB_to_suppyrFRB+1, \ num_suppyrFRB+1) com_tuftIB_to_supbask=new Matrix(num_tuftIB_to_supbask+1, \ num_supbask+1) com_tuftIB_to_supaxax=new Matrix(num_tuftIB_to_supaxax+1, \ num_supaxax+1) com_tuftIB_to_supLTS=new Matrix(num_tuftIB_to_supLTS+1, \ num_supLTS+1) com_tuftIB_to_spinstell=new Matrix(num_tuftIB_to_spinstell+1, \ num_spinstell+1) com_tuftIB_to_tuftIB=new Matrix(num_tuftIB_to_tuftIB+1, \ num_tuftIB+1) com_tuftIB_to_tuftRS=new Matrix(num_tuftIB_to_tuftRS+1, \ num_tuftRS+1) com_tuftIB_to_deepbask=new Matrix(num_tuftIB_to_deepbask+1, \ num_deepbask+1) com_tuftIB_to_deepaxax=new Matrix(num_tuftIB_to_deepaxax+1, \ num_deepaxax+1) com_tuftIB_to_deepLTS=new Matrix(num_tuftIB_to_deepLTS+1, \ num_deepLTS+1) com_tuftIB_to_nontuftRS=new Matrix(num_tuftIB_to_nontuftRS+1, \ num_nontuftRS+1) objref com_tuftRS_to_suppyrRS, \ com_tuftRS_to_suppyrFRB, \ com_tuftRS_to_supbask, \ com_tuftRS_to_supaxax, \ com_tuftRS_to_supLTS, \ com_tuftRS_to_spinstell, \ com_tuftRS_to_tuftIB, \ com_tuftRS_to_tuftRS, \ com_tuftRS_to_deepbask, \ com_tuftRS_to_deepaxax, \ com_tuftRS_to_deepLTS, \ com_tuftRS_to_nontuftRS, \ com_deepbask_to_spinstell, \ com_deepbask_to_tuftIB, \ com_deepbask_to_tuftRS, \ com_deepbask_to_deepbask, \ com_deepbask_to_deepaxax, \ com_deepbask_to_deepLTS, \ com_deepbask_to_nontuftRS com_tuftRS_to_suppyrRS=new Matrix(num_tuftRS_to_suppyrRS+1, \ num_suppyrRS+1) com_tuftRS_to_suppyrFRB=new Matrix(num_tuftRS_to_suppyrFRB+1, \ num_suppyrFRB+1) com_tuftRS_to_supbask=new Matrix(num_tuftRS_to_supbask+1, \ num_supbask+1) com_tuftRS_to_supaxax=new Matrix(num_tuftRS_to_supaxax+1, \ num_supaxax+1) com_tuftRS_to_supLTS=new Matrix(num_tuftRS_to_supLTS+1, \ num_supLTS+1) com_tuftRS_to_spinstell=new Matrix(num_tuftRS_to_spinstell+1, \ num_spinstell+1) com_tuftRS_to_tuftIB=new Matrix(num_tuftRS_to_tuftIB+1, \ num_tuftIB+1) com_tuftRS_to_tuftRS=new Matrix(num_tuftRS_to_tuftRS+1, \ num_tuftRS+1) com_tuftRS_to_deepbask=new Matrix(num_tuftRS_to_deepbask+1, \ num_deepbask+1) com_tuftRS_to_deepaxax=new Matrix(num_tuftRS_to_deepaxax+1, \ num_deepaxax+1) com_tuftRS_to_deepLTS=new Matrix(num_tuftRS_to_deepLTS+1, \ num_deepLTS+1) com_tuftRS_to_nontuftRS=new Matrix(num_tuftRS_to_nontuftRS+1, \ num_nontuftRS+1) com_deepbask_to_spinstell=new Matrix(num_deepbask_to_spinstell+1, \ num_spinstell+1) com_deepbask_to_tuftIB=new Matrix(num_deepbask_to_tuftIB+1, \ num_tuftIB+1) com_deepbask_to_tuftRS=new Matrix(num_deepbask_to_tuftRS+1, \ num_tuftRS+1) com_deepbask_to_deepbask=new Matrix(num_deepbask_to_deepbask+1, \ num_deepbask+1) com_deepbask_to_deepaxax=new Matrix(num_deepbask_to_deepaxax+1, \ num_deepaxax+1) com_deepbask_to_deepLTS=new Matrix(num_deepbask_to_deepLTS+1, \ num_deepLTS+1) com_deepbask_to_nontuftRS=new Matrix(num_deepbask_to_nontuftRS+1, \ num_nontuftRS+1) objref com_deepaxax_to_suppyrRS, \ com_deepaxax_to_suppyrFRB, \ com_deepaxax_to_spinstell, \ com_deepaxax_to_tuftIB, \ com_deepaxax_to_tuftRS, \ com_deepaxax_to_nontuftRS, \ com_deepLTS_to_suppyrRS, \ com_deepLTS_to_suppyrFRB, \ com_deepLTS_to_supbask, \ com_deepLTS_to_supaxax, \ com_deepLTS_to_supLTS, \ com_deepLTS_to_spinstell, \ com_deepLTS_to_tuftIB, \ com_deepLTS_to_tuftRS, \ com_deepLTS_to_deepbask, \ com_deepLTS_to_deepaxax, \ com_deepLTS_to_deepLTS com_deepaxax_to_suppyrRS=new Matrix(num_deepaxax_to_suppyrRS+1, \ num_suppyrRS+1) com_deepaxax_to_suppyrFRB=new Matrix(num_deepaxax_to_suppyrFRB+1, \ num_suppyrFRB+1) com_deepaxax_to_spinstell=new Matrix(num_deepaxax_to_spinstell+1, \ num_spinstell+1) com_deepaxax_to_tuftIB=new Matrix(num_deepaxax_to_tuftIB+1, \ num_tuftIB+1) com_deepaxax_to_tuftRS=new Matrix(num_deepaxax_to_tuftRS+1, \ num_tuftRS+1) com_deepaxax_to_nontuftRS=new Matrix(num_deepaxax_to_nontuftRS+1, \ num_nontuftRS+1) com_deepLTS_to_suppyrRS=new Matrix(num_deepLTS_to_suppyrRS+1, \ num_suppyrRS+1) com_deepLTS_to_suppyrFRB=new Matrix(num_deepLTS_to_suppyrFRB+1, \ num_suppyrFRB+1) com_deepLTS_to_supbask=new Matrix(num_deepLTS_to_supbask+1, \ num_supbask+1) com_deepLTS_to_supaxax=new Matrix(num_deepLTS_to_supaxax+1, \ num_supaxax+1) com_deepLTS_to_supLTS=new Matrix(num_deepLTS_to_supLTS+1, \ num_supLTS+1) com_deepLTS_to_spinstell=new Matrix(num_deepLTS_to_spinstell+1, \ num_spinstell+1) com_deepLTS_to_tuftIB=new Matrix(num_deepLTS_to_tuftIB+1, \ num_tuftIB+1) com_deepLTS_to_tuftRS=new Matrix(num_deepLTS_to_tuftRS+1, \ num_tuftRS+1) com_deepLTS_to_deepbask=new Matrix(num_deepLTS_to_deepbask+1, \ num_deepbask+1) com_deepLTS_to_deepaxax=new Matrix(num_deepLTS_to_deepaxax+1, \ num_deepaxax+1) com_deepLTS_to_deepLTS=new Matrix(num_deepLTS_to_deepLTS+1, \ num_deepLTS+1) objref com_deepLTS_to_nontuftRS, \ com_TCR_to_suppyrRS, \ com_TCR_to_suppyrFRB, \ com_TCR_to_supbask com_deepLTS_to_nontuftRS=new Matrix(num_deepLTS_to_nontuftRS+1, \ num_nontuftRS+1) com_TCR_to_suppyrRS=new Matrix(num_TCR_to_suppyrRS+1, \ num_suppyrRS+1) com_TCR_to_suppyrFRB=new Matrix(num_TCR_to_suppyrFRB+1, \ num_suppyrFRB+1) com_TCR_to_supbask=new Matrix(num_TCR_to_supbask+1, \ num_supbask+1) objref com_TCR_to_supaxax, \ com_TCR_to_spinstell, \ com_TCR_to_tuftIB, \ com_TCR_to_tuftRS, \ com_TCR_to_deepbask, \ com_TCR_to_deepaxax, \ com_TCR_to_nRT, \ com_TCR_to_nontuftRS, \ com_nRT_to_TCR, \ com_nRT_to_nRT com_TCR_to_supaxax=new Matrix(num_TCR_to_supaxax+1, num_supaxax+1) com_TCR_to_spinstell=new Matrix(num_TCR_to_spinstell+1, num_spinstell+1) com_TCR_to_tuftIB=new Matrix(num_TCR_to_tuftIB+1, num_tuftIB+1) com_TCR_to_tuftRS=new Matrix(num_TCR_to_tuftRS+1, num_tuftRS+1) com_TCR_to_deepbask=new Matrix(num_TCR_to_deepbask+1, num_deepbask+1) com_TCR_to_deepaxax=new Matrix(num_TCR_to_deepaxax+1, num_deepaxax+1) com_TCR_to_nRT=new Matrix(num_TCR_to_nRT+1, num_nRT+1) com_TCR_to_nontuftRS=new Matrix(num_TCR_to_nontuftRS+1, num_nontuftRS+1) com_nRT_to_TCR=new Matrix(num_nRT_to_TCR+1, num_TCR+1) com_nRT_to_nRT=new Matrix(num_nRT_to_nRT+1, num_nRT+1) objref com_nontuftRS_to_suppyrRS, \ com_nontuftRS_to_suppyrFRB, \ com_nontuftRS_to_supbask, \ com_nontuftRS_to_supaxax, \ com_nontuftRS_to_supLTS, \ com_nontuftRS_to_spinstell, \ com_nontuftRS_to_tuftIB com_nontuftRS_to_suppyrRS=new Matrix(num_nontuftRS_to_suppyrRS+1, \ num_suppyrRS+1) com_nontuftRS_to_suppyrFRB=new Matrix(num_nontuftRS_to_suppyrFRB+1, \ num_suppyrFRB+1) com_nontuftRS_to_supbask=new Matrix(num_nontuftRS_to_supbask+1, \ num_supbask+1) com_nontuftRS_to_supaxax=new Matrix(num_nontuftRS_to_supaxax+1, \ num_supaxax+1) com_nontuftRS_to_supLTS=new Matrix(num_nontuftRS_to_supLTS+1, \ num_supLTS+1) com_nontuftRS_to_spinstell=new Matrix(num_nontuftRS_to_spinstell+1, \ num_spinstell+1) com_nontuftRS_to_tuftIB=new Matrix(num_nontuftRS_to_tuftIB+1, \ num_tuftIB+1) objref com_nontuftRS_to_tuftRS, \ com_nontuftRS_to_deepbask, \ com_nontuftRS_to_deepaxax, \ com_nontuftRS_to_deepLTS, \ com_nontuftRS_to_TCR, \ com_nontuftRS_to_nRT, \ com_nontuftRS_to_nontuftRS com_nontuftRS_to_tuftRS=new Matrix(num_nontuftRS_to_tuftRS+1, \ num_tuftRS+1) com_nontuftRS_to_deepbask=new Matrix(num_nontuftRS_to_deepbask+1, \ num_deepbask+1) com_nontuftRS_to_deepaxax=new Matrix(num_nontuftRS_to_deepaxax+1, \ num_deepaxax+1) com_nontuftRS_to_deepLTS=new Matrix(num_nontuftRS_to_deepLTS+1, \ num_deepLTS+1) com_nontuftRS_to_TCR=new Matrix(num_nontuftRS_to_TCR+1, num_TCR+1) com_nontuftRS_to_nRT=new Matrix(num_nontuftRS_to_nRT+1, num_nRT+1) com_nontuftRS_to_nontuftRS=new Matrix(num_nontuftRS_to_nontuftRS+1, \ num_nontuftRS+1) // Entries in gjtable(fixed_row,col 1-4) are cell a, compart. of cell a with gj, // cell b, compart. of cell b with gj; entries not repeated // which means that for given cell being integrated table // must be searched through cols. 1 and 3. objref gjtable_suppyrRS, \ gjtable_suppyrFRB, \ gjtable_suppyr , \ gjtable_supbask , \ gjtable_supaxax , \ gjtable_supLTS , \ gjtable_spinstell, \ gjtable_tuftIB , \ gjtable_tuftRS , \ gjtable_tuft , \ gjtable_nontuftRS, \ gjtable_deepbask , \ gjtable_deepaxax , \ gjtable_deepLTS , \ gjtable_TCR , \ gjtable_nRT gjtable_suppyrFRB=new Matrix(totaxgj_suppyrFRB+1, 4+1) gjtable_suppyr =new Matrix(totaxgj_suppyr+1, 4+1) gjtable_supbask =new Matrix(totSDgj_supbask+1, 4+1) gjtable_supaxax =new Matrix(1 +1, 4+1) gjtable_supLTS =new Matrix(totSDgj_supLTS+1, 4+1) gjtable_spinstell=new Matrix(totaxgj_spinstell+1, 4+1) gjtable_tuftIB =new Matrix(totaxgj_tuftIB+1, 4+1) gjtable_tuftRS =new Matrix(totaxgj_tuftRS+1, 4+1) gjtable_tuft =new Matrix(totaxgj_tuft+1, 4+1) gjtable_nontuftRS=new Matrix(totaxgj_nontuftRS+1, 4+1) gjtable_deepbask =new Matrix(totSDgj_deepbask+1, 4+1) gjtable_deepaxax =new Matrix(1 +1, 4+1) gjtable_deepLTS =new Matrix(totSDgj_deepLTS+1, 4+1) gjtable_TCR =new Matrix(totaxgj_TCR+1, 4+1) gjtable_nRT =new Matrix(totSDgj_nRT+1, 4+1) // comment for above: // gjtable_suppyr for suppyrRS/suppyrFRB gj, with RS cell // in col. 1 and FRB cell in col. 3 // gjtable_tuft for tuftIB/tuftRS gj, with IB cell // in col. 1 and RS cell in col. 3. // define compartments on which gj can form objref table_axgjcompallow_suppyrRS, \ table_axgjcompallow_suppyrFRB, \ table_SDgjcompallow_supbask , \ table_SDgjcompallow_supLTS , \ table_axgjcompallow_spinstell, \ table_axgjcompallow_tuftIB , \ table_axgjcompallow_tuftRS , \ table_axgjcompallow_nontuftRS, \ table_SDgjcompallow_deepbask , \ table_SDgjcompallow_deepLTS , \ table_axgjcompallow_TCR , \ table_SDgjcompallow_nRT table_axgjcompallow_suppyrRS=new Vector() table_axgjcompallow_suppyrFRB=new Vector() table_SDgjcompallow_supbask =new Vector() table_SDgjcompallow_supLTS =new Vector() table_axgjcompallow_spinstell=new Vector() table_axgjcompallow_tuftIB =new Vector() table_axgjcompallow_tuftRS =new Vector() table_axgjcompallow_nontuftRS=new Vector() table_SDgjcompallow_deepbask =new Vector() table_SDgjcompallow_deepLTS =new Vector() table_axgjcompallow_TCR =new Vector() table_SDgjcompallow_nRT =new Vector() // above was duplicated and split up to assign values: // define compartments on which gj can form // note an extra 0.1 value is appended first to shift the indicies // to FORTRAN style values start at index 1. // 0.1 will generate an // error if ever accidentally used which will indicate that the index // should have started at the next value (1 instead of index 0) { table_axgjcompallow_suppyrRS.append(0.1,74) table_axgjcompallow_suppyrFRB.append(0.1, 74) table_SDgjcompallow_supbask.append(0.1,3,4,16,17,29,30,42,43) table_SDgjcompallow_supLTS.append(0.1, 3,4,16,17,29,30,42,43) table_axgjcompallow_spinstell.append(0.1,59) table_axgjcompallow_tuftIB.append(0.1, 61) table_axgjcompallow_tuftRS.append(0.1,61) table_axgjcompallow_nontuftRS.append(0.1,50) table_SDgjcompallow_deepbask.append(0.1, 3,4,16,17,29,30,42,43) table_SDgjcompallow_deepLTS.append(0.1, 3,4,16,17,29,30,42,43) table_axgjcompallow_TCR.append(0.1, 137) table_SDgjcompallow_nRT.append(0.1, 3,4,16,17,29,30,42,43) } // in the below the // comments were uncommented above: // Ectopics to superficial pyr. cells then go to #72, see // supergj.f // table_SDgjcompallow_supbask [num_SDgjcompallow_supbask +1] // /3,4,16,17,29,30,42,43/, // table_SDgjcompallow_supLTS [num_SDgjcompallow_supLTS +1] // /3,4,16,17,29,30,42,43/, // table_axgjcompallow_spinstell[num_axgjcompallow_spinstell+1] // /59/, // Ectopics to spiny stellates then go to #57 // table_axgjcompallow_tuftIB [num_axgjcompallow_tuftIB +1] // /61/, // table_axgjcompallow_tuftRS [num_axgjcompallow_tuftRS +1] // /61/, // Ectopics to tufted pyr. cells then go to #60 // table_axgjcompallow_nontuftRS[num_axgjcompallow_nontuftRS+1] // /50/, // Ectopics to nontufted deep pyr. cells then to #48 // table_SDgjcompallow_deepbask [num_SDgjcompallow_deepbask +1] // /3,4,16,17,29,30,42,43/, // table_SDgjcompallow_deepLTS [num_SDgjcompallow_deepLTS +1] // /3,4,16,17,29,30,42,43/, // table_axgjcompallow_TCR [num_axgjcompallow_TCR +1] // /137/, // Ectopics to TCR cells to #135 // table_SDgjcompallow_nRT [num_SDgjcompallow_nRT +1] // /3,4,16,17,29,30,42,43/ // dexptablesmall[i] = dexp[-z+1], i = int [z*1000.], 0<=z<=5. // dexptablebig [i] = dexp[-z+1], i = int [z*10.], 0<=z<=100. objref dexptablesmall // these actually have fortran values at objref dexptablebig // index 0 (see groucho.f) dexptablesmall= new Vector(5000+1) // these actually have fortran values at dexptablebig= new Vector(1000+1) // index 0 (see groucho.f) // Define arrays, constants, for voltages, applied currents, // synaptic conductances, random numbers, etc. // This was originally uncommented in the fortran code: // double \ // V_suppyrRS [numcomp_suppyrRS+1][ num_suppyrRS+1], \ // V_suppyrFRB [numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // V_supbask [numcomp_supbask+1][ num_supbask+1], \ // V_supaxax [numcomp_supaxax+1][ num_supaxax+1], \ // V_supLTS [numcomp_supLTS+1][ num_supLTS+1], \ // V_spinstell [numcomp_spinstell+1][ num_spinstell+1], \ // V_tuftIB [numcomp_tuftIB+1][ num_tuftIB+1], \ // V_tuftRS [numcomp_tuftRS+1][ num_tuftRS+1], \ // V_nontuftRS [numcomp_nontuftRS+1][ num_nontuftRS+1], \ // V_deepbask [numcomp_deepbask+1][ num_deepbask+1], \ // V_deepaxax [numcomp_deepaxax+1][ num_deepaxax+1], \ // V_deepLTS [numcomp_deepLTS+1][ num_deepLTS+1], \ // V_TCR [numcomp_TCR+1][ num_TCR+1], \ // V_nRT [numcomp_nRT+1][ num_nRT+1] // // this seems like a good place to create the cells as they // will then have corresponding quantities to the above // localloadfile("cell_templates.hoc") objref suppyrRS_[ num_suppyrRS+1] objref suppyrFRB_[ num_suppyrFRB+1] objref supbask_[ num_supbask+1] objref supaxax_[ num_supaxax+1] objref supLTS_[ num_supLTS+1] objref spinstell_[ num_spinstell+1] objref tuftIB_[ num_tuftIB+1] objref tuftRS_[ num_tuftRS+1] objref nontuftRS_[ num_nontuftRS+1] objref deepbask_[ num_deepbask+1] objref deepaxax_[ num_deepaxax+1] objref deepLTS_[ num_deepLTS+1] objref TCR_[ num_TCR+1] objref nRT_[ num_nRT+1] if (pmesg) print "Initializing Network" if (small_model) { small_size_network = 40 if (pmesg) print "In test case only ",small_size_network,"cells of each type are created" num_suppyrRS = small_size_network num_suppyrFRB = small_size_network num_supbask = small_size_network num_supaxax = small_size_network num_supLTS = small_size_network num_spinstell = small_size_network num_tuftIB = small_size_network num_tuftRS = small_size_network num_nontuftRS = small_size_network num_deepbask = small_size_network num_deepaxax = small_size_network num_deepLTS = small_size_network num_TCR = small_size_network num_nRT = small_size_network } pnm.ncell = num_suppyrRS + \ num_suppyrFRB + \ num_supbask + \ num_supaxax + \ num_supLTS + \ num_spinstell + \ num_tuftIB + \ num_tuftRS + \ num_nontuftRS + \ num_deepbask + \ num_deepaxax + \ num_deepLTS + \ num_TCR + \ num_nRT gid_distribute() if (pmesg) print "creating ", pnm.ncell," cells:" if (pmesg) print "" base_=-1 // variable keeps track of where cells start // to find the nth cell of type celltype use celltype_base+n as // index in cells list. // Note that this converts a fortran style index 1, num_celltype // to the cells list index (0, total_num_of_cells-1) spacer = 0 space_between_cells = 10 // microns func increment_spacer() { spacer = spacer + space_between_cells return spacer } if (pmesg) print "creating ",num_suppyrRS,"suppyrRS cells" suppyrRS_base=base_ for i=1, num_suppyrRS { if (serial) { cell_append(new suppyrRS(), 0, 0, increment_spacer()) } else { par_create("cell_append(new suppyrRS(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_suppyrFRB,"suppyrFRB cells" suppyrFRB_base=base_ for i=1, num_suppyrFRB { if (serial) { cell_append(new suppyrFRB(), 0, 0, increment_spacer()) } else { par_create("cell_append(new suppyrFRB(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_supbask,"supbask cells" supbask_base=base_ for i=1, num_supbask { if (serial) { cell_append(new supbask(), 0, 0, increment_spacer()) } else { par_create("cell_append(new supbask(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_supaxax,"supaxax cells" supaxax_base=base_ for i=1, num_supaxax { if (serial) { cell_append(new supaxax(), 0, 0, increment_spacer()) } else { par_create("cell_append(new supaxax(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_supLTS,"supLTS cells" supLTS_base=base_ for i=1, num_supLTS { if (serial) { cell_append(new supLTS(), 0, 0, increment_spacer()) } else { par_create("cell_append(new supLTS(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_spinstell,"spinstell cells" spinstell_base=base_ for i=1, num_spinstell { if (serial) { cell_append(new spinstell(), 0, 0, increment_spacer()) } else { par_create("cell_append(new spinstell(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_tuftIB,"tuftIB cells" tuftIB_base=base_ for i=1, num_tuftIB { if (serial) { cell_append(new tuftIB(), 0, 0, increment_spacer()) } else { par_create("cell_append(new tuftIB(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_tuftRS,"tuftRS cells" tuftRS_base=base_ for i=1, num_tuftRS { if (serial) { cell_append(new tuftRS(), 0, 0, increment_spacer()) } else { par_create("cell_append(new tuftRS(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_nontuftRS,"nontuftRS cells" nontuftRS_base=base_ for i=1, num_nontuftRS { if (serial) { cell_append(new nontuftRS(), 0, 0, increment_spacer()) } else { par_create("cell_append(new nontuftRS(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_deepbask,"deepbask cells" deepbask_base=base_ for i=1, num_deepbask { if (serial) { cell_append(new deepbask(), 0, 0, increment_spacer()) } else { par_create("cell_append(new deepbask(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_deepaxax,"deepaxax cells" deepaxax_base=base_ for i=1, num_deepaxax { if (serial) { cell_append(new deepaxax(), 0, 0, increment_spacer()) } else { par_create("cell_append(new deepaxax(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_deepLTS,"deepLTS cells" deepLTS_base=base_ for i=1, num_deepLTS { if (serial) { cell_append(new deepLTS(), 0, 0, increment_spacer()) } else { par_create("cell_append(new deepLTS(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_TCR,"TCR cells" TCR_base=base_ for i=1, num_TCR { if (serial) { cell_append(new TCR(), 0, 0, increment_spacer()) } else { par_create("cell_append(new TCR(), 0, 0, increment_spacer())") } base_ = base_ + 1 } if (pmesg) print "creating ",num_nRT,"nRT cells" nRT_base=base_ for i=1, num_nRT { if (serial) { cell_append(new nRT(), 0, 0, increment_spacer()) } else { par_create("cell_append(new nRT(), 0, 0, increment_spacer())") } base_ = base_ + 1 } par_register_cells() if (pmesg) print "Done creating cells" // the following were current vectors that create an arbitrary amount of injected // current in compartments in the cells, used during integration of the network // These should be implemented in mod files as curr_inject mechanism that is // inserted into each compartment desired as a point process. Then the variables // const.curr_inject and rand_mag.curr_inject determine the constant portion and // the random portion of current injection into that compartment. // double \ objref curr_suppyrRS curr_suppyrRS = new Matrix(numcomp_suppyrRS+1, num_suppyrRS+1) objref curr_suppyrFRB curr_suppyrFRB = new Matrix(numcomp_suppyrFRB+1, num_suppyrFRB+1) objref curr_supbask curr_supbask = new Matrix(numcomp_supbask+1, num_supbask+1) objref curr_supaxax curr_supaxax = new Matrix(numcomp_supaxax+1, num_supaxax+1) objref curr_supLTS curr_supLTS = new Matrix(numcomp_supLTS+1, num_supLTS+1) objref curr_spinstell curr_spinstell = new Matrix(numcomp_spinstell+1, num_spinstell+1) objref curr_tuftIB curr_tuftIB = new Matrix(numcomp_tuftIB+1, num_tuftIB+1) objref curr_tuftRS curr_tuftRS = new Matrix(numcomp_tuftRS+1, num_tuftRS+1) objref curr_nontuftRS curr_nontuftRS = new Matrix(numcomp_nontuftRS+1, num_nontuftRS+1) objref curr_deepbask curr_deepbask = new Matrix(numcomp_deepbask+1, num_deepbask+1) objref curr_deepaxax curr_deepaxax = new Matrix(numcomp_deepaxax+1, num_deepaxax+1) objref curr_deepLTS curr_deepLTS = new Matrix(numcomp_deepLTS+1, num_deepLTS+1) objref curr_TCR curr_TCR = new Matrix(numcomp_TCR+1, num_TCR+1) objref curr_nRT curr_nRT = new Matrix(numcomp_nRT+1, num_nRT+1) // The following used to hold the amount of instantaneous conductance in the // AMPA, NMDA, and GABA_A receptors in each compartment. // In NEURON those values will be held in the gampa synaptic point process mechanism. // double \ // gAMPA_suppyrRS [numcomp_suppyrRS+1][ num_suppyrRS+1], \ // gAMPA_suppyrFRB [numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // gAMPA_supbask [numcomp_supbask+1][ num_supbask+1], \ // gAMPA_supaxax [numcomp_supaxax+1][ num_supaxax+1], \ // gAMPA_supLTS [numcomp_supLTS+1][ num_supLTS+1], \ // gAMPA_spinstell [numcomp_spinstell+1][ num_spinstell+1], \ // gAMPA_tuftIB [numcomp_tuftIB+1][ num_tuftIB+1], \ // gAMPA_tuftRS [numcomp_tuftRS+1][ num_tuftRS+1], \ // gAMPA_nontuftRS [numcomp_nontuftRS+1][ num_nontuftRS+1], \ // gAMPA_deepbask [numcomp_deepbask+1][ num_deepbask+1], \ // gAMPA_deepaxax [numcomp_deepaxax+1][ num_deepaxax+1], \ // gAMPA_deepLTS [numcomp_deepLTS+1][ num_deepLTS+1], \ // gAMPA_TCR [numcomp_TCR+1][ num_TCR+1], \ // gAMPA_nRT [numcomp_nRT+1][ num_nRT+1] // double \ // gNMDA_suppyrRS [numcomp_suppyrRS+1][ num_suppyrRS+1], \ // gNMDA_suppyrFRB [numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // gNMDA_supbask [numcomp_supbask+1][ num_supbask+1], \ // gNMDA_supaxax [numcomp_supaxax+1][ num_supaxax+1], \ // gNMDA_supLTS [numcomp_supLTS+1][ num_supLTS+1], \ // gNMDA_spinstell [numcomp_spinstell+1][ num_spinstell+1], \ // gNMDA_tuftIB [numcomp_tuftIB+1][ num_tuftIB+1], \ // gNMDA_tuftRS [numcomp_tuftRS+1][ num_tuftRS+1], \ // gNMDA_nontuftRS [numcomp_nontuftRS+1][ num_nontuftRS+1], \ // gNMDA_deepbask [numcomp_deepbask+1][ num_deepbask+1], \ // gNMDA_deepaxax [numcomp_deepaxax+1][ num_deepaxax+1], \ // gNMDA_deepLTS [numcomp_deepLTS+1][ num_deepLTS+1], \ // gNMDA_TCR [numcomp_TCR+1][ num_TCR+1], \ // gNMDA_nRT [numcomp_nRT+1][ num_nRT+1] // double \ // gGABA_A_suppyrRS [numcomp_suppyrRS+1][ num_suppyrRS+1], \ // gGABA_A_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // gGABA_A_supbask [numcomp_supbask+1][ num_supbask+1], \ // gGABA_A_supaxax [numcomp_supaxax+1][ num_supaxax+1], \ // gGABA_A_supLTS [numcomp_supLTS+1][ num_supLTS+1], \ // gGABA_A_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // gGABA_A_tuftIB [numcomp_tuftIB+1][ num_tuftIB+1], \ // gGABA_A_tuftRS [numcomp_tuftRS+1][ num_tuftRS+1], \ // gGABA_A_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // gGABA_A_deepbask [numcomp_deepbask+1][ num_deepbask+1], \ // gGABA_A_deepaxax [numcomp_deepaxax+1][ num_deepaxax+1], \ // gGABA_A_deepLTS [numcomp_deepLTS+1][ num_deepLTS+1], \ // gGABA_A_TCR [numcomp_TCR+1][ num_TCR+1], \ // gGABA_A_nRT [numcomp_nRT+1][ num_nRT+1] // The following FORTRAN mechanism variables are now contained in the NEURON // mechanisms. // define membrane and Ca state variables that must be passed // to subroutines // double chi_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mnaf_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mnap_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // hnaf_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mkdr_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mka_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // hka_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mk2_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // hk2_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mkm_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mkc_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mkahp_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mcat_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // hcat_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mcal_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1], \ // mar_suppyrRS[numcomp_suppyrRS+1][ num_suppyrRS+1] // // double chi_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mnaf_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mnap_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // hnaf_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mkdr_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mka_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // hka_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mk2_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // hk2_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mkm_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mkc_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mkahp_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mcat_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // hcat_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mcal_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1], \ // mar_suppyrFRB[numcomp_suppyrFRB+1][ num_suppyrFRB+1] // // double chi_supbask [numcomp_supbask , num_supbask+1] , \ // mnaf_supbask [numcomp_supbask , num_supbask +1], \ // mnap_supbask [numcomp_supbask , num_supbask +1], \ // hnaf_supbask [numcomp_supbask , num_supbask +1], \ // mkdr_supbask [numcomp_supbask , num_supbask +1], \ // mka_supbask [numcomp_supbask , num_supbask +1], \ // hka_supbask [numcomp_supbask , num_supbask +1], \ // mk2_supbask [numcomp_supbask , num_supbask +1], \ // hk2_supbask [numcomp_supbask , num_supbask +1], \ // mkm_supbask [numcomp_supbask , num_supbask +1], \ // mkc_supbask [numcomp_supbask , num_supbask +1], \ // mkahp_supbask [numcomp_supbask , num_supbask +1], \ // mcat_supbask [numcomp_supbask , num_supbask +1], \ // hcat_supbask [numcomp_supbask , num_supbask +1], \ // mcal_supbask [numcomp_supbask , num_supbask +1], \ // mar_supbask [numcomp_supbask , num_supbask +1] // // double chi_supaxax [numcomp_supaxax , num_supaxax +1] , \ // mnaf_supaxax [numcomp_supaxax , num_supaxax +1], \ // mnap_supaxax [numcomp_supaxax , num_supaxax +1], \ // hnaf_supaxax [numcomp_supaxax , num_supaxax +1], \ // mkdr_supaxax [numcomp_supaxax , num_supaxax +1], \ // mka_supaxax [numcomp_supaxax , num_supaxax +1], \ // hka_supaxax [numcomp_supaxax , num_supaxax +1], \ // mk2_supaxax [numcomp_supaxax , num_supaxax +1], \ // hk2_supaxax [numcomp_supaxax , num_supaxax +1], \ // mkm_supaxax [numcomp_supaxax , num_supaxax +1], \ // mkc_supaxax [numcomp_supaxax , num_supaxax +1], \ // mkahp_supaxax [numcomp_supaxax , num_supaxax +1], \ // mcat_supaxax [numcomp_supaxax , num_supaxax +1], \ // hcat_supaxax [numcomp_supaxax , num_supaxax +1], \ // mcal_supaxax [numcomp_supaxax , num_supaxax +1], \ // mar_supaxax [numcomp_supaxax , num_supaxax +1] // // double chi_supLTS[numcomp_supLTS+1][ num_supLTS+1] ,\ // mnaf_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mnap_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // hnaf_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mkdr_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mka_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // hka_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mk2_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // hk2_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mkm_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mkc_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mkahp_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mcat_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // hcat_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mcal_supLTS[numcomp_supLTS+1][ num_supLTS+1], \ // mar_supLTS[numcomp_supLTS+1][ num_supLTS+1] // // double chi_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mnaf_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mnap_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // hnaf_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mkdr_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mka_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // hka_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mk2_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // hk2_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mkm_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mkc_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mkahp_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mcat_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // hcat_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mcal_spinstell[numcomp_spinstell+1][ num_spinstell+1], \ // mar_spinstell[numcomp_spinstell+1][ num_spinstell+1] // // // double chi_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mnaf_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mnap_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // hnaf_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mkdr_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mka_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // hka_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mk2_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // hk2_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mkm_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mkc_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mkahp_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mcat_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // hcat_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mcal_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1], \ // mar_tuftIB[numcomp_tuftIB+1][ num_tuftIB+1] // // double chi_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mnaf_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mnap_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // hnaf_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mkdr_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mka_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // hka_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mk2_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // hk2_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mkm_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mkc_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mkahp_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mcat_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // hcat_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mcal_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1], \ // mar_tuftRS[numcomp_tuftRS+1][ num_tuftRS+1] // // double chi_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mnaf_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mnap_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // hnaf_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mkdr_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mka_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // hka_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mk2_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // hk2_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mkm_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mkc_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mkahp_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mcat_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // hcat_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mcal_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1], \ // mar_nontuftRS[numcomp_nontuftRS+1][ num_nontuftRS+1] // // double chi_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mnaf_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mnap_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // hnaf_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mkdr_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mka_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // hka_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mk2_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // hk2_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mkm_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mkc_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mkahp_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mcat_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // hcat_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mcal_deepbask[numcomp_deepbask+1][ num_deepbask+1], \ // mar_deepbask[numcomp_deepbask+1][ num_deepbask+1] // // double chi_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mnaf_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mnap_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // hnaf_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mkdr_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mka_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // hka_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mk2_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // hk2_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mkm_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mkc_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mkahp_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mcat_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // hcat_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mcal_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1], \ // mar_deepaxax[numcomp_deepaxax+1][ num_deepaxax+1] // // double chi_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mnaf_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mnap_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // hnaf_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mkdr_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mka_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // hka_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mk2_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // hk2_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mkm_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mkc_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mkahp_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mcat_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // hcat_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mcal_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1], \ // mar_deepLTS[numcomp_deepLTS+1][ num_deepLTS+1] // // double chi_TCR[numcomp_TCR+1][ num_TCR+1], \ // mnaf_TCR[numcomp_TCR+1][ num_TCR+1], \ // mnap_TCR[numcomp_TCR+1][ num_TCR+1], \ // hnaf_TCR[numcomp_TCR+1][ num_TCR+1], \ // mkdr_TCR[numcomp_TCR+1][ num_TCR+1], \ // mka_TCR[numcomp_TCR+1][ num_TCR+1], \ // hka_TCR[numcomp_TCR+1][ num_TCR+1], \ // mk2_TCR[numcomp_TCR+1][ num_TCR+1], \ // hk2_TCR[numcomp_TCR+1][ num_TCR+1], \ // mkm_TCR[numcomp_TCR+1][ num_TCR+1], \ // mkc_TCR[numcomp_TCR+1][ num_TCR+1], \ // mkahp_TCR[numcomp_TCR+1][ num_TCR+1], \ // mcat_TCR[numcomp_TCR+1][ num_TCR+1], \ // hcat_TCR[numcomp_TCR+1][ num_TCR+1], \ // mcal_TCR[numcomp_TCR+1][ num_TCR+1], \ // mar_TCR[numcomp_TCR+1][ num_TCR+1] // // double chi_nRT[numcomp_nRT+1][ num_nRT+1], \ // mnaf_nRT[numcomp_nRT+1][ num_nRT+1], \ // mnap_nRT[numcomp_nRT+1][ num_nRT+1], \ // hnaf_nRT[numcomp_nRT+1][ num_nRT+1], \ // mkdr_nRT[numcomp_nRT+1][ num_nRT+1], \ // mka_nRT[numcomp_nRT+1][ num_nRT+1], \ // hka_nRT[numcomp_nRT+1][ num_nRT+1], \ // mk2_nRT[numcomp_nRT+1][ num_nRT+1], \ // hk2_nRT[numcomp_nRT+1][ num_nRT+1], \ // mkm_nRT[numcomp_nRT+1][ num_nRT+1], \ // mkc_nRT[numcomp_nRT+1][ num_nRT+1], \ // mkahp_nRT[numcomp_nRT+1][ num_nRT+1], \ // mcat_nRT[numcomp_nRT+1][ num_nRT+1], \ // hcat_nRT[numcomp_nRT+1][ num_nRT+1], \ // mcal_nRT[numcomp_nRT+1][ num_nRT+1], \ // mar_nRT[numcomp_nRT+1][ num_nRT+1] // These vectors were used to supply random tonic and/or phasic currents // to cells. These rolls are given in NEURON to mechanisms. // double \ objref ranvec_suppyrRS ranvec_suppyrRS = new Vector(num_suppyrRS+1) objref ranvec_suppyrFRB ranvec_suppyrFRB = new Vector(num_suppyrFRB+1) objref ranvec_supbask ranvec_supbask = new Vector(num_supbask+1) objref ranvec_supaxax ranvec_supaxax = new Vector(num_supaxax+1) objref ranvec_supLTS ranvec_supLTS = new Vector(num_supLTS+1) objref ranvec_spinstell ranvec_spinstell = new Vector(num_spinstell+1) objref ranvec_tuftIB ranvec_tuftIB = new Vector(num_tuftIB+1) objref ranvec_tuftRS ranvec_tuftRS = new Vector(num_tuftRS+1) objref ranvec_nontuftRS ranvec_nontuftRS = new Vector(num_nontuftRS+1) objref ranvec_deepbask ranvec_deepbask = new Vector(num_deepbask+1) objref ranvec_deepaxax ranvec_deepaxax = new Vector(num_deepaxax+1) objref ranvec_deepLTS ranvec_deepLTS = new Vector(num_deepLTS+1) objref ranvec_TCR ranvec_TCR = new Vector(num_TCR+1) objref ranvec_nRT ranvec_nRT = new Vector(num_nRT+1) // maybe this value will be used for a NEURON version of Traub's // choice of a random number generator: objref seed seed = new Vector() {seed.append(137.e0)} // In NEURON the below FORTRAN voltage quantities will be shared with pointers. // Define arrays for distal axon voltages which will be shared // between nodes. // double \ // distal_axon_suppyrRS [num_suppyrRS+1], \ // distal_axon_suppyrFRB [num_suppyrRS+1], \ // distal_axon_supbask [num_suppyrRS+1], \ // distal_axon_supaxax [num_suppyrRS+1], \ // distal_axon_supLTS [num_suppyrRS+1], \ // distal_axon_spinstell [num_suppyrRS+1], \ // distal_axon_tuftIB [num_suppyrRS+1], \ // distal_axon_tuftRS [num_suppyrRS+1], \ // distal_axon_nontuftRS [num_suppyrRS+1], \ // distal_axon_deepbask [num_suppyrRS+1], \ // distal_axon_deepaxax [num_suppyrRS+1], \ // distal_axon_deepLTS [num_suppyrRS+1], \ // distal_axon_TCR [num_suppyrRS+1], \ // distal_axon_nRT [num_suppyrRS+1], \ // distal_axon_global [14000+1] //14000 = 14 x num_suppyrRS \ // about above: // distal_axon_suppyrFRB [num_suppyrFRB+1], // make all distal_axon have the length max [num_celltype+1] // distal_axon_global will be concatenation of individual // distal_axon vectors // positions 1 - 1000 suppyrRS axons // 1001 - 2000 suppyrFRB axons // 2001 - 3000 supbask // 3001 - 4000 supaxax // 4001 - 5000 supLTS // 5001 - 6000 spinstell // 6001 - 7000 tuftIB // 7001 - 8000 tuftRS // 8001 - 9000 nontuftRS // 9001 - 10000 deepbask // 10001 - 11000 deepaxax // 11001 - 12000 deepLTS // 12001 - 13000 TCR // 13001 - 14000 nRT //** The below voltages will be shared in NEURON via pointers to the // compartment voltages. // define arrays for axonal voltges+1][ needed for mixed gj // double \ // vax_suppyrRS [num_suppyrRS+1], \ // vax_suppyrFRB [num_suppyrFRB+1], \ // vax_tuftIB [num_tuftIB+1], vax_tuftRS [num_tuftRS+1] //** The below spike times and counts will be handled instead by NEURON's event // handling. In the FORTRAN code these were used to compute the // difference between the last spike in a presynaptic cell and the // the current time for the purpose of computing the synaptic // conductances for the AMPA, NMDA, and GABA_A, wherever they exist(ed). // double \ // outtime_suppyrRS [5000+1][ num_suppyrRS+1], \ // outtime_suppyrFRB [5000+1][ num_suppyrFRB+1], \ // outtime_supbask [5000+1][ num_supbask+1], \ // outtime_supaxax [5000+1][ num_supaxax+1], \ // outtime_supLTS [5000+1][ num_supLTS+1], \ // outtime_spinstell [5000+1][ num_spinstell+1], \ // outtime_tuftIB [5000+1][ num_tuftIB+1], \ // outtime_tuftRS [5000+1][ num_tuftRS+1], \ // outtime_nontuftRS [5000+1][ num_nontuftRS+1], \ // outtime_deepbask [5000+1][ num_deepbask+1], \ // outtime_deepaxax [5000+1][ num_deepaxax+1], \ // outtime_deepLTS [5000+1][ num_deepLTS+1], \ // outtime_TCR [5000+1][ num_TCR+1], \ // outtime_nRT [5000+1][ num_nRT+1] // double \ // outctr_suppyrRS [num_suppyrRS+1], \ // outctr_suppyrFRB [num_suppyrFRB+1], \ // outctr_supbask [num_supbask+1], \ // outctr_supaxax [num_supaxax+1], \ // outctr_supLTS [num_supLTS+1], \ // outctr_spinstell [num_spinstell+1], \ // outctr_tuftIB [num_tuftIB+1], \ // outctr_tuftRS [num_tuftRS+1], \ // outctr_nontuftRS [num_nontuftRS+1], \ // outctr_deepbask [num_deepbask+1], \ // outctr_deepaxax [num_deepaxax+1], \ // outctr_deepLTS [num_deepLTS+1], \ // outctr_TCR [num_TCR+1], \ // outctr_nRT [num_nRT+1] // gettime, time1, time2, time, timtot, gettime // original declar double t_time[2] // FORTRAN real's that do not need a declaration because they are not arrays: // dtime, , e_time // e_time is dtime output // time1, time2, time, timtot // presyntime, delta, dexparg, dexparg1, dexparg2 // integer thisno, display /1/, O // integer info, nodes // z, z1, z2, double outrcd[20] // include 'mpif.h' // character* [MPI_MAXROCESSOR_NAME) name // integer resultlength // integer debug=0 // either 0 for normal or 1 for ignore 4 cells // tuftRS, TCR, nontuftRS, tuftIB that report // nan // START EXECUTION PHASE // this version will be mpif77 // call trapfpe() // allows floating point exceptions to be trapped in gdb // call mpi_init (info) // call mpi_comm_rank(mpi_comm_world, thisno, info) // call mpi_comm_size(mpi_comm_world, nodes , info) // call MPI_GET_PROCESSOR_NAME(name,resultlength,ierr) // print *, 'Process ', rank, ' of ', size, ' is alive on ',name // write (*,2220)thisno, nodes, name // 2220 FORMAT("Process ",I2," of ",I2," is alive on ",A18) // if (thisno.eq.0) then // print *,'dt = ',dt // endif time1 = 0.e0 // used to be =gettime() // dtime when called will give elapsed time from start of program // outtime_cellname(event_number, cell_number) records the time // of the last presynaptic spike from that cell -tmm // for i = 1, 5000 { // for j = 1, num_cell { // settings of outtime_cell[i][j] = -1.e5 for all cells.... // } // j { // } // do i { // timtot = 750.e0 // timtot = 1600.e0 // timtot = 0.02e0 // tiny debug time doesn't test 0.05 interval // timtot = 0.104e0 // debug time does test 0.05 interval (~40 secs to run) // and writes one set of time points to the GROUNCO110 files // timtot = 0.5e0 // minimal time for 5 write's of output voltages (21 minutes) // timtot = 1.2e0 // debug time does test 0.05 interval // timtot = dt // enough for one time step // timtot =13.72e0 // took about 38 minutes to get to 6.8 ms then crashed in continued // debuging timtot =64.4e0 // projected to take 6 hours at 5.59 minutes computing / msec model time // the AMPA, NMDA, and GABA_A synapses are all // alpha functions g = delta exp( -delta/tau ) /* the following generated by grep distal_axon groucho_orig.f | grep \(L\) |grep -v if reveals the presynaptic compartments for chemical synapses: distal_axon_suppyrRS (L) = V_suppyrRS (72,L) distal_axon_suppyrFRB (L) = V_suppyrFRB (72,L) distal_axon_supbask (L) = V_supbask (59,L) distal_axon_supaxax (L) = V_supaxax (59,L) distal_axon_supLTS (L) = V_supLTS (59,L) distal_axon_spinstell (L) = V_spinstell (57,L) distal_axon_tuftIB (L) = V_tuftIB (60,L) distal_axon_tuftRS (L) = V_tuftRS (60,L) distal_axon_nontuftRS (L) = V_nontuftRS (48,L) distal_axon_deepbask (L) = V_deepbask (59,L) distal_axon_deepaxax (L) = V_deepaxax (59,L) distal_axon_deepLTS (L) = V_deepLTS (59,L) distal_axon_TCR (L) = V_TCR (135,L) distal_axon_nRT (L) = V_nRT (59,L) The following variables capture these compartment numbers: */ suppyrRS_presyn_comp = 72 suppyrFRB_presyn_comp = 72 supbask_presyn_comp = 59 supaxax_presyn_comp = 59 supLTS_presyn_comp = 59 spinstell_presyn_comp = 57 tuftIB_presyn_comp = 60 tuftRS_presyn_comp = 60 nontuftRS_presyn_comp = 48 deepbask_presyn_comp = 59 deepaxax_presyn_comp = 59 deepLTS_presyn_comp = 59 TCR_presyn_comp = 135 nRT_presyn_comp = 59 // Compartments contacted by axoaxonic interneurons are IS only // (I think IS stands for Initial Segment - tmmm) for i = 1, num_suppyrRS { for j = 1, num_supaxax_to_suppyrRS { com_supaxax_to_suppyrRS.x[j][i] = 69 } } for i = 1, num_suppyrFRB { for j = 1, num_supaxax_to_suppyrFRB { com_supaxax_to_suppyrFRB.x[j][i] = 69 } } for i = 1, num_spinstell { for j = 1, num_supaxax_to_spinstell { com_supaxax_to_spinstell.x[j][i] = 54 } } for i = 1, num_tuftIB { for j = 1, num_supaxax_to_tuftIB { com_supaxax_to_tuftIB.x[j][i] = 56 } } for i = 1, num_tuftRS { for j = 1, num_supaxax_to_tuftRS { com_supaxax_to_tuftRS.x[j][i] = 56 } } for i = 1, num_nontuftRS { for j = 1, num_supaxax_to_nontuftRS { com_supaxax_to_nontuftRS.x[j][i] = 45 } } for i = 1, num_suppyrRS { for j = 1, num_deepaxax_to_suppyrRS { com_deepaxax_to_suppyrRS.x[j][i] = 69 } } for i = 1, num_suppyrFRB { for j = 1, num_deepaxax_to_suppyrFRB { com_deepaxax_to_suppyrFRB.x[j][i] = 69 } } for i = 1, num_spinstell { for j = 1, num_deepaxax_to_spinstell { com_deepaxax_to_spinstell.x[j][i] = 54 } } for i = 1, num_tuftIB { for j = 1, num_deepaxax_to_tuftIB { com_deepaxax_to_tuftIB.x[j][i] = 56 } } for i = 1, num_tuftRS { for j = 1, num_deepaxax_to_tuftRS { com_deepaxax_to_tuftRS.x[j][i] = 56 } } for i = 1, num_nontuftRS { for j = 1, num_deepaxax_to_nontuftRS { com_deepaxax_to_nontuftRS.x[j][i] = 45 } } // End section on making axoaxonic cells connect to IS's // Construct synaptic connectivity tables display = 0 thisno = 0 // thisno is only required for the display // of sample settings in the called subroutines below: // in the FORTRAN code it represents the (mpi) rank of the process. {localloadfile("durand.hoc")} {localloadfile("synaptic_map_construct.hoc")} {localloadfile("synaptic_compmap_construct.hoc")} if (pmesg) print "Constructing suppyrRS_to_suppyrRS maps" // E: map_suppyrRS_to_suppyrRS = synaptic_map_construct (thisno, \ num_suppyrRS, num_suppyrRS, \ num_suppyrRS_to_suppyrRS, display, "map_suppyrRS_to_suppyrRS") if (pmesg) print "Constructing suppyrRS_to_suppyrFRB maps.. and so forth" // E: map_suppyrRS_to_suppyrFRB = synaptic_map_construct (thisno, \ num_suppyrRS, num_suppyrFRB, \ num_suppyrRS_to_suppyrFRB, display, "map_suppyrRS_to_suppyrFRB") // I: map_suppyrRS_to_supbask = synaptic_map_construct (thisno, \ num_suppyrRS, num_supbask, \ num_suppyrRS_to_supbask, display, "map_suppyrRS_to_supbask") map_suppyrRS_to_supaxax = synaptic_map_construct (thisno, \ num_suppyrRS, num_supaxax, \ num_suppyrRS_to_supaxax, display, "map_suppyrRS_to_supaxax") map_suppyrRS_to_supLTS = synaptic_map_construct (thisno, \ num_suppyrRS, num_supLTS, \ num_suppyrRS_to_supLTS, display, "map_suppyrRS_to_supLTS") map_suppyrRS_to_spinstell = synaptic_map_construct (thisno, \ num_suppyrRS, num_spinstell, \ num_suppyrRS_to_spinstell, display, "map_suppyrRS_to_spinstell") map_suppyrRS_to_tuftIB = synaptic_map_construct (thisno, \ num_suppyrRS, num_tuftIB, \ num_suppyrRS_to_tuftIB, display, "map_suppyrRS_to_tuftIB") map_suppyrRS_to_tuftRS = synaptic_map_construct (thisno, \ num_suppyrRS, num_tuftRS, \ num_suppyrRS_to_tuftRS, display, "map_suppyrRS_to_tuftRS") map_suppyrRS_to_deepbask = synaptic_map_construct (thisno, \ num_suppyrRS, num_deepbask, \ num_suppyrRS_to_deepbask, display, "map_suppyrRS_to_deepbask") map_suppyrRS_to_deepaxax = synaptic_map_construct (thisno, \ num_suppyrRS, num_deepaxax, \ num_suppyrRS_to_deepaxax, display, "map_suppyrRS_to_deepaxax") map_suppyrRS_to_deepLTS = synaptic_map_construct (thisno, \ num_suppyrRS, num_deepLTS, \ num_suppyrRS_to_deepLTS, display, "map_suppyrRS_to_deepLTS") if (pmesg) print "constructing suppyrRS_to_nontuftRS" map_suppyrRS_to_nontuftRS = synaptic_map_construct (thisno, \ num_suppyrRS, num_nontuftRS, \ num_suppyrRS_to_nontuftRS, display, "map_suppyrRS_to_nontuftRS") if (pmesg) print "constructing suppyrFRB_to_suppyrRS" map_suppyrFRB_to_suppyrRS = synaptic_map_construct (thisno, \ num_suppyrFRB, num_suppyrRS, \ num_suppyrFRB_to_suppyrRS, display, "map_suppyrFRB_to_suppyrRS") map_suppyrFRB_to_suppyrFRB = synaptic_map_construct (thisno, \ num_suppyrFRB, num_suppyrFRB, \ num_suppyrFRB_to_suppyrFRB, display, "map_suppyrFRB_to_suppyrFRB") map_suppyrFRB_to_supbask = synaptic_map_construct (thisno, \ num_suppyrFRB, num_supbask, \ num_suppyrFRB_to_supbask, display, "map_suppyrFRB_to_supbask") map_suppyrFRB_to_supaxax = synaptic_map_construct (thisno, \ num_suppyrFRB, num_supaxax, \ num_suppyrFRB_to_supaxax, display, "map_suppyrFRB_to_supaxax") map_suppyrFRB_to_supLTS = synaptic_map_construct (thisno, \ num_suppyrFRB, num_supLTS, \ num_suppyrFRB_to_supLTS, display, "map_suppyrFRB_to_supLTS") map_suppyrFRB_to_spinstell = synaptic_map_construct (thisno, \ num_suppyrFRB, num_spinstell, \ num_suppyrFRB_to_spinstell, display, "map_suppyrFRB_to_spinstell") map_suppyrFRB_to_tuftIB = synaptic_map_construct (thisno, \ num_suppyrFRB, num_tuftIB, \ num_suppyrFRB_to_tuftIB, display, "map_suppyrFRB_to_tuftIB") map_suppyrFRB_to_tuftRS = synaptic_map_construct (thisno, \ num_suppyrFRB, num_tuftRS, \ num_suppyrFRB_to_tuftRS, display, "map_suppyrFRB_to_tuftRS") map_suppyrFRB_to_deepbask = synaptic_map_construct (thisno, \ num_suppyrFRB, num_deepbask, \ num_suppyrFRB_to_deepbask, display, "map_suppyrFRB_to_deepbask") map_suppyrFRB_to_deepaxax = synaptic_map_construct (thisno, \ num_suppyrFRB, num_deepaxax, \ num_suppyrFRB_to_deepaxax, display, "map_suppyrFRB_to_deepaxax") map_suppyrFRB_to_deepLTS = synaptic_map_construct (thisno, \ num_suppyrFRB, num_deepLTS, \ num_suppyrFRB_to_deepLTS, display, "map_suppyrFRB_to_deepLTS") map_suppyrFRB_to_nontuftRS = synaptic_map_construct (thisno, \ num_suppyrFRB, num_nontuftRS, \ num_suppyrFRB_to_nontuftRS, display, "map_suppyrFRB_to_nontuftRS") map_supbask_to_suppyrRS = synaptic_map_construct (thisno, \ num_supbask, num_suppyrRS, \ num_supbask_to_suppyrRS, display, "map_supbask_to_suppyrRS") map_supbask_to_suppyrFRB = synaptic_map_construct (thisno, \ num_supbask, num_suppyrFRB, \ num_supbask_to_suppyrFRB, display, "map_supbask_to_suppyrFRB") map_supbask_to_supbask = synaptic_map_construct (thisno, \ num_supbask, num_supbask, \ num_supbask_to_supbask, display, "map_supbask_to_supbask") map_supbask_to_supaxax = synaptic_map_construct (thisno, \ num_supbask, num_supaxax, \ num_supbask_to_supaxax, display, "map_supbask_to_supaxax") map_supbask_to_supLTS = synaptic_map_construct (thisno, \ num_supbask, num_supLTS, \ num_supbask_to_supLTS, display, "map_supbask_to_supLTS") map_supbask_to_spinstell = synaptic_map_construct (thisno, \ num_supbask, num_spinstell, \ num_supbask_to_spinstell, display, "map_supbask_to_spinstell") map_supaxax_to_suppyrRS = synaptic_map_construct (thisno, \ num_supaxax, num_suppyrRS, \ num_supaxax_to_suppyrRS, display, "map_supaxax_to_suppyrRS") map_supaxax_to_suppyrFRB = synaptic_map_construct (thisno, \ num_supaxax, num_suppyrFRB, \ num_supaxax_to_suppyrFRB, display, "map_supaxax_to_suppyrFRB") map_supaxax_to_spinstell = synaptic_map_construct (thisno, \ num_supaxax, num_spinstell, \ num_supaxax_to_spinstell, display, "map_supaxax_to_spinstell") map_supaxax_to_tuftIB = synaptic_map_construct (thisno, \ num_supaxax, num_tuftIB, \ num_supaxax_to_tuftIB, display, "map_supaxax_to_tuftIB") map_supaxax_to_tuftRS = synaptic_map_construct (thisno, \ num_supaxax, num_tuftRS, \ num_supaxax_to_tuftRS, display, "map_supaxax_to_tuftRS") map_supaxax_to_nontuftRS = synaptic_map_construct (thisno, \ num_supaxax, num_nontuftRS, \ num_supaxax_to_nontuftRS, display, "map_supaxax_to_nontuftRS") map_supLTS_to_suppyrRS = synaptic_map_construct (thisno, \ num_supLTS, num_suppyrRS, \ num_supLTS_to_suppyrRS , display, "map_supLTS_to_suppyrRS") map_supLTS_to_suppyrFRB = synaptic_map_construct (thisno, \ num_supLTS, num_suppyrFRB, \ num_supLTS_to_suppyrFRB, display, "map_supLTS_to_suppyrFRB") map_supLTS_to_supbask = synaptic_map_construct (thisno, \ num_supLTS, num_supbask, \ num_supLTS_to_supbask, display, "map_supLTS_to_supbask") map_supLTS_to_supaxax = synaptic_map_construct (thisno, \ num_supLTS, num_supaxax, \ num_supLTS_to_supaxax, display, "map_supLTS_to_supaxax") map_supLTS_to_supLTS = synaptic_map_construct (thisno, \ num_supLTS, num_supLTS, \ num_supLTS_to_supLTS, display, "map_supLTS_to_supLTS") map_supLTS_to_spinstell = synaptic_map_construct (thisno, \ num_supLTS, num_spinstell, \ num_supLTS_to_spinstell, display, "map_supLTS_to_spinstell") map_supLTS_to_tuftIB = synaptic_map_construct (thisno, \ num_supLTS, num_tuftIB, \ num_supLTS_to_tuftIB , display, "map_supLTS_to_tuftIB") map_supLTS_to_tuftRS = synaptic_map_construct (thisno, \ num_supLTS, num_tuftRS, \ num_supLTS_to_tuftRS , display, "map_supLTS_to_tuftRS") map_supLTS_to_deepbask = synaptic_map_construct (thisno, \ num_supLTS, num_deepbask, \ num_supLTS_to_deepbask , display, "map_supLTS_to_deepbask") map_supLTS_to_deepaxax = synaptic_map_construct (thisno, \ num_supLTS, num_deepaxax, \ num_supLTS_to_deepaxax , display, "map_supLTS_to_deepaxax") map_supLTS_to_deepLTS = synaptic_map_construct (thisno, \ num_supLTS, num_deepLTS, \ num_supLTS_to_deepLTS, display, "map_supLTS_to_deepLTS") map_supLTS_to_nontuftRS = synaptic_map_construct (thisno, \ num_supLTS, num_nontuftRS, \ num_supLTS_to_nontuftRS, display, "map_supLTS_to_nontuftRS") map_spinstell_to_suppyrRS = synaptic_map_construct (thisno, \ num_spinstell, num_suppyrRS, \ num_spinstell_to_suppyrRS, display, "map_spinstell_to_suppyrRS") map_spinstell_to_suppyrFRB = synaptic_map_construct (thisno, \ num_spinstell, num_suppyrFRB, \ num_spinstell_to_suppyrFRB, display, "map_spinstell_to_suppyrFRB") map_spinstell_to_supbask = synaptic_map_construct (thisno, \ num_spinstell, num_supbask, \ num_spinstell_to_supbask, display, "map_spinstell_to_supbask") map_spinstell_to_supaxax = synaptic_map_construct (thisno, \ num_spinstell, num_supaxax, \ num_spinstell_to_supaxax, display, "map_spinstell_to_supaxax") map_spinstell_to_supLTS = synaptic_map_construct (thisno, \ num_spinstell, num_supLTS, \ num_spinstell_to_supLTS, display, "map_spinstell_to_supLTS") map_spinstell_to_spinstell = synaptic_map_construct (thisno, \ num_spinstell, num_spinstell, \ num_spinstell_to_spinstell, display, "map_spinstell_to_spinstell") map_spinstell_to_tuftIB = synaptic_map_construct (thisno, \ num_spinstell, num_tuftIB, \ num_spinstell_to_tuftIB, display, "map_spinstell_to_tuftIB") map_spinstell_to_tuftRS = synaptic_map_construct (thisno, \ num_spinstell, num_tuftRS, \ num_spinstell_to_tuftRS, display, "map_spinstell_to_tuftRS") map_spinstell_to_deepbask = synaptic_map_construct (thisno, \ num_spinstell, num_deepbask, \ num_spinstell_to_deepbask, display, "map_spinstell_to_deepbask") map_spinstell_to_deepaxax = synaptic_map_construct (thisno, \ num_spinstell, num_deepaxax, \ num_spinstell_to_deepaxax, display, "map_spinstell_to_deepaxax") map_spinstell_to_deepLTS = synaptic_map_construct (thisno, \ num_spinstell, num_deepLTS, \ num_spinstell_to_deepLTS, display, "map_spinstell_to_deepLTS") map_spinstell_to_nontuftRS = synaptic_map_construct (thisno, \ num_spinstell, num_nontuftRS, \ num_spinstell_to_nontuftRS, display, "map_spinstell_to_nontuftRS") map_tuftIB_to_suppyrRS = synaptic_map_construct (thisno, \ num_tuftIB, num_suppyrRS, \ num_tuftIB_to_suppyrRS, display, "map_tuftIB_to_suppyrRS") map_tuftIB_to_suppyrFRB = synaptic_map_construct (thisno, \ num_tuftIB, num_suppyrFRB, \ num_tuftIB_to_suppyrFRB, display, "map_tuftIB_to_suppyrFRB") map_tuftIB_to_supbask = synaptic_map_construct (thisno, \ num_tuftIB, num_supbask, \ num_tuftIB_to_supbask, display, "map_tuftIB_to_supbask") map_tuftIB_to_supaxax = synaptic_map_construct (thisno, \ num_tuftIB, num_supaxax, \ num_tuftIB_to_supaxax, display, "map_tuftIB_to_supaxax") map_tuftIB_to_supLTS = synaptic_map_construct (thisno, \ num_tuftIB, num_supLTS, \ num_tuftIB_to_supLTS, display, "map_tuftIB_to_supLTS") map_tuftIB_to_spinstell = synaptic_map_construct (thisno, \ num_tuftIB, num_spinstell, \ num_tuftIB_to_spinstell, display, "map_tuftIB_to_spinstell") map_tuftIB_to_tuftIB = synaptic_map_construct (thisno, \ num_tuftIB, num_tuftIB , \ num_tuftIB_to_tuftIB , display, "map_tuftIB_to_tuftIB") map_tuftIB_to_tuftRS = synaptic_map_construct (thisno, \ num_tuftIB, num_tuftRS , \ num_tuftIB_to_tuftRS , display, "map_tuftIB_to_tuftRS") map_tuftIB_to_deepbask = synaptic_map_construct (thisno, \ num_tuftIB, num_deepbask , \ num_tuftIB_to_deepbask , display, "map_tuftIB_to_deepbask") map_tuftIB_to_deepaxax = synaptic_map_construct (thisno, \ num_tuftIB, num_deepaxax , \ num_tuftIB_to_deepaxax , display, "map_tuftIB_to_deepaxax") map_tuftIB_to_deepLTS = synaptic_map_construct (thisno, \ num_tuftIB, num_deepLTS , \ num_tuftIB_to_deepLTS , display, "map_tuftIB_to_deepLTS") map_tuftIB_to_nontuftRS = synaptic_map_construct (thisno, \ num_tuftIB, num_nontuftRS, \ num_tuftIB_to_nontuftRS, display, "map_tuftIB_to_nontuftRS") map_tuftRS_to_suppyrRS = synaptic_map_construct (thisno, \ num_tuftRS, num_suppyrRS , \ num_tuftRS_to_suppyrRS , display, "map_tuftRS_to_suppyrRS") map_tuftRS_to_suppyrFRB = synaptic_map_construct (thisno, \ num_tuftRS, num_suppyrFRB, \ num_tuftRS_to_suppyrFRB, display, "map_tuftRS_to_suppyrFRB") map_tuftRS_to_supbask = synaptic_map_construct (thisno, \ num_tuftRS, num_supbask , \ num_tuftRS_to_supbask , display, "map_tuftRS_to_supbask") map_tuftRS_to_supaxax = synaptic_map_construct (thisno, \ num_tuftRS, num_supaxax , \ num_tuftRS_to_supaxax , display, "map_tuftRS_to_supaxax") map_tuftRS_to_supLTS = synaptic_map_construct (thisno, \ num_tuftRS, num_supLTS , \ num_tuftRS_to_supLTS , display, "map_tuftRS_to_supLTS") map_tuftRS_to_spinstell = synaptic_map_construct (thisno, \ num_tuftRS, num_spinstell, \ num_tuftRS_to_spinstell, display, "map_tuftRS_to_spinstell") map_tuftRS_to_tuftIB = synaptic_map_construct (thisno, \ num_tuftRS, num_tuftIB , \ num_tuftRS_to_tuftIB , display, "map_tuftRS_to_tuftIB") map_tuftRS_to_tuftRS = synaptic_map_construct (thisno, \ num_tuftRS, num_tuftRS , \ num_tuftRS_to_tuftRS , display, "map_tuftRS_to_tuftRS") map_tuftRS_to_deepbask = synaptic_map_construct (thisno, \ num_tuftRS, num_deepbask , \ num_tuftRS_to_deepbask , display, "map_tuftRS_to_deepbask") map_tuftRS_to_deepaxax = synaptic_map_construct (thisno, \ num_tuftRS, num_deepaxax , \ num_tuftRS_to_deepaxax , display, "map_tuftRS_to_deepaxax") map_tuftRS_to_deepLTS = synaptic_map_construct (thisno, \ num_tuftRS, num_deepLTS , \ num_tuftRS_to_deepLTS , display, "map_tuftRS_to_deepLTS") map_tuftRS_to_nontuftRS = synaptic_map_construct (thisno, \ num_tuftRS, num_nontuftRS, \ num_tuftRS_to_nontuftRS, display, "map_tuftRS_to_nontuftRS") map_deepbask_to_spinstell = synaptic_map_construct (thisno, \ num_deepbask, num_spinstell, \ num_deepbask_to_spinstell, display, "map_deepbask_to_spinstell") map_deepbask_to_tuftIB = synaptic_map_construct (thisno, \ num_deepbask, num_tuftIB , \ num_deepbask_to_tuftIB , display, "map_deepbask_to_tuftIB") map_deepbask_to_tuftRS = synaptic_map_construct (thisno, \ num_deepbask, num_tuftRS , \ num_deepbask_to_tuftRS , display, "map_deepbask_to_tuftRS") map_deepbask_to_deepbask = synaptic_map_construct (thisno, \ num_deepbask, num_deepbask , \ num_deepbask_to_deepbask , display, "map_deepbask_to_deepbask") map_deepbask_to_deepaxax = synaptic_map_construct (thisno, \ num_deepbask, num_deepaxax , \ num_deepbask_to_deepaxax , display, "map_deepbask_to_deepaxax") map_deepbask_to_deepLTS = synaptic_map_construct (thisno, \ num_deepbask, num_deepLTS , \ num_deepbask_to_deepLTS , display, "map_deepbask_to_deepLTS") map_deepbask_to_nontuftRS = synaptic_map_construct (thisno, \ num_deepbask, num_nontuftRS, \ num_deepbask_to_nontuftRS, display, "map_deepbask_to_nontuftRS") map_deepaxax_to_suppyrRS = synaptic_map_construct (thisno, \ num_deepaxax, num_suppyrRS , \ num_deepaxax_to_suppyrRS , display, "map_deepaxax_to_suppyrRS") map_deepaxax_to_suppyrFRB = synaptic_map_construct (thisno, \ num_deepaxax, num_suppyrFRB, \ num_deepaxax_to_suppyrFRB, display, "map_deepaxax_to_suppyrFRB") map_deepaxax_to_spinstell = synaptic_map_construct (thisno, \ num_deepaxax, num_spinstell, \ num_deepaxax_to_spinstell, display, "map_deepaxax_to_spinstell") map_deepaxax_to_tuftIB = synaptic_map_construct (thisno, \ num_deepaxax, num_tuftIB , \ num_deepaxax_to_tuftIB , display, "map_deepaxax_to_tuftIB") map_deepaxax_to_tuftRS = synaptic_map_construct (thisno, \ num_deepaxax, num_tuftRS , \ num_deepaxax_to_tuftRS , display, "map_deepaxax_to_tuftRS") map_deepaxax_to_nontuftRS = synaptic_map_construct (thisno, \ num_deepaxax, num_nontuftRS , \ num_deepaxax_to_nontuftRS , display, "map_deepaxax_to_nontuftRS") map_deepLTS_to_suppyrRS = synaptic_map_construct (thisno, \ num_deepLTS , num_suppyrRS , \ num_deepLTS_to_suppyrRS , display, "map_deepLTS_to_suppyrRS") map_deepLTS_to_suppyrFRB = synaptic_map_construct (thisno, \ num_deepLTS , num_suppyrFRB , \ num_deepLTS_to_suppyrFRB , display, "map_deepLTS_to_suppyrFRB") map_deepLTS_to_supbask = synaptic_map_construct (thisno, \ num_deepLTS , num_supbask , \ num_deepLTS_to_supbask , display, "map_deepLTS_to_supbask") map_deepLTS_to_supaxax = synaptic_map_construct (thisno, \ num_deepLTS , num_supaxax , \ num_deepLTS_to_supaxax , display, "map_deepLTS_to_supaxax") map_deepLTS_to_supLTS = synaptic_map_construct (thisno, \ num_deepLTS , num_supLTS , \ num_deepLTS_to_supLTS , display, "map_deepLTS_to_supLTS") map_deepLTS_to_spinstell = synaptic_map_construct (thisno, \ num_deepLTS , num_spinstell , \ num_deepLTS_to_spinstell , display, "map_deepLTS_to_spinstell") map_deepLTS_to_tuftIB = synaptic_map_construct (thisno, \ num_deepLTS , num_tuftIB , \ num_deepLTS_to_tuftIB , display, "map_deepLTS_to_tuftIB") map_deepLTS_to_tuftRS = synaptic_map_construct (thisno, \ num_deepLTS , num_tuftRS , \ num_deepLTS_to_tuftRS , display, "map_deepLTS_to_tuftRS") map_deepLTS_to_deepbask = synaptic_map_construct (thisno, \ num_deepLTS , num_deepbask , \ num_deepLTS_to_deepbask , display, "map_deepLTS_to_deepbask") map_deepLTS_to_deepaxax = synaptic_map_construct (thisno, \ num_deepLTS , num_deepaxax , \ num_deepLTS_to_deepaxax , display, "map_deepLTS_to_deepaxax") map_deepLTS_to_deepLTS = synaptic_map_construct (thisno, \ num_deepLTS , num_deepLTS , \ num_deepLTS_to_deepLTS , display, "map_deepLTS_to_deepLTS") map_deepLTS_to_nontuftRS = synaptic_map_construct (thisno, \ num_deepLTS , num_nontuftRS , \ num_deepLTS_to_nontuftRS , display, "map_deepLTS_to_nontuftRS") map_TCR_to_suppyrRS = synaptic_map_construct (thisno, \ num_TCR , num_suppyrRS , \ num_TCR_to_suppyrRS , display, "map_TCR_to_suppyrRS") map_TCR_to_suppyrFRB = synaptic_map_construct (thisno, \ num_TCR , num_suppyrFRB , \ num_TCR_to_suppyrFRB , display, "map_TCR_to_suppyrFRB") map_TCR_to_supbask = synaptic_map_construct (thisno, \ num_TCR , num_supbask , \ num_TCR_to_supbask , display, "map_TCR_to_supbask") map_TCR_to_supaxax = synaptic_map_construct (thisno, \ num_TCR , num_supaxax , \ num_TCR_to_supaxax , display, "map_TCR_to_supaxax") map_TCR_to_spinstell = synaptic_map_construct (thisno, \ num_TCR , num_spinstell , \ num_TCR_to_spinstell , display, "map_TCR_to_spinstell") map_TCR_to_tuftIB = synaptic_map_construct (thisno, \ num_TCR , num_tuftIB , \ num_TCR_to_tuftIB , display, "map_TCR_to_tuftIB") map_TCR_to_tuftRS = synaptic_map_construct (thisno, \ num_TCR , num_tuftRS , \ num_TCR_to_tuftRS , display, "map_TCR_to_tuftRS") map_TCR_to_deepbask = synaptic_map_construct (thisno, \ num_TCR , num_deepbask , \ num_TCR_to_deepbask , display, "map_TCR_to_deepbask") map_TCR_to_deepaxax = synaptic_map_construct (thisno, \ num_TCR , num_deepaxax , \ num_TCR_to_deepaxax , display, "map_TCR_to_deepaxax") map_TCR_to_nRT = synaptic_map_construct (thisno, \ num_TCR , num_nRT , \ num_TCR_to_nRT , display, "map_TCR_to_nRT") map_TCR_to_nontuftRS = synaptic_map_construct (thisno, \ num_TCR , num_nontuftRS , \ num_TCR_to_nontuftRS , display, "map_TCR_to_nontuftRS") map_nRT_to_TCR = synaptic_map_construct (thisno, \ num_nRT , num_TCR , \ num_nRT_to_TCR , display, "map_nRT_to_TCR") map_nRT_to_nRT = synaptic_map_construct (thisno, \ num_nRT , num_nRT , \ num_nRT_to_nRT , display, "map_nRT_to_nRT") map_nontuftRS_to_suppyrRS = synaptic_map_construct (thisno, \ num_nontuftRS , num_suppyrRS , \ num_nontuftRS_to_suppyrRS , display, "map_nontuftRS_to_suppyrRS") map_nontuftRS_to_suppyrFRB = synaptic_map_construct (thisno, \ num_nontuftRS , num_suppyrFRB , \ num_nontuftRS_to_suppyrFRB , display, "map_nontuftRS_to_suppyrFRB") map_nontuftRS_to_supbask = synaptic_map_construct (thisno, \ num_nontuftRS , num_supbask , \ num_nontuftRS_to_supbask , display, "map_nontuftRS_to_supbask") map_nontuftRS_to_supaxax = synaptic_map_construct (thisno, \ num_nontuftRS , num_supaxax , \ num_nontuftRS_to_supaxax , display, "map_nontuftRS_to_supaxax") map_nontuftRS_to_supLTS = synaptic_map_construct (thisno, \ num_nontuftRS , num_supLTS , \ num_nontuftRS_to_supLTS , display, "map_nontuftRS_to_supLTS") map_nontuftRS_to_spinstell = synaptic_map_construct (thisno, \ num_nontuftRS , num_spinstell , \ num_nontuftRS_to_spinstell , display, "map_nontuftRS_to_spinstell") map_nontuftRS_to_tuftIB = synaptic_map_construct (thisno, \ num_nontuftRS , num_tuftIB , \ num_nontuftRS_to_tuftIB , display, "map_nontuftRS_to_tuftIB") map_nontuftRS_to_tuftRS = synaptic_map_construct (thisno, \ num_nontuftRS , num_tuftRS , \ num_nontuftRS_to_tuftRS , display, "map_nontuftRS_to_tuftRS") map_nontuftRS_to_deepbask = synaptic_map_construct (thisno, \ num_nontuftRS , num_deepbask , \ num_nontuftRS_to_deepbask , display, "map_nontuftRS_to_deepbask") map_nontuftRS_to_deepaxax = synaptic_map_construct (thisno, \ num_nontuftRS , num_deepaxax , \ num_nontuftRS_to_deepaxax , display, "map_nontuftRS_to_deepaxax") map_nontuftRS_to_deepLTS = synaptic_map_construct (thisno, \ num_nontuftRS , num_deepLTS , \ num_nontuftRS_to_deepLTS , display, "map_nontuftRS_to_deepLTS") map_nontuftRS_to_TCR = synaptic_map_construct (thisno, \ num_nontuftRS , num_TCR , \ num_nontuftRS_to_TCR , display, "map_nontuftRS_to_TCR") map_nontuftRS_to_nRT = synaptic_map_construct (thisno, \ num_nontuftRS , num_nRT , \ num_nontuftRS_to_nRT , display, "map_nontuftRS_to_nRT") map_nontuftRS_to_nontuftRS = synaptic_map_construct (thisno, \ num_nontuftRS , num_nontuftRS , \ num_nontuftRS_to_nontuftRS , display, "map_nontuftRS_to_nontuftRS") // Finish construction of synaptic connection tables. if (pmesg) print " finished construction of cell connection tables" if (pmesg) print "Starting construction of compartment map connection tables" // Construct synaptic compartment maps. display = 0 objref netcon_list netcon_list = new List() if (pmesg) print " calling com_suppyrRS_to_suppyrRS = synaptic_compmap_construct" com_suppyrRS_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS, \ num_suppyrRS_to_suppyrRS, \ ncompallow_suppyrRS_to_suppyrRS, \ compallow_suppyrRS_to_suppyrRS, display, "com_suppyrRS_to_suppyrRS") if (pmesg) print "..." com_suppyrRS_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_suppyrRS_to_suppyrFRB, \ ncompallow_suppyrRS_to_suppyrFRB, \ compallow_suppyrRS_to_suppyrFRB, display, "com_suppyrRS_to_suppyrFRB") com_suppyrRS_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_suppyrRS_to_supbask, \ ncompallow_suppyrRS_to_supbask, \ compallow_suppyrRS_to_supbask, display, "com_suppyrRS_to_supbask") com_suppyrRS_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_suppyrRS_to_supaxax, \ ncompallow_suppyrRS_to_supaxax, \ compallow_suppyrRS_to_supaxax, display, "com_suppyrRS_to_supaxax") com_suppyrRS_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_suppyrRS_to_supLTS, \ ncompallow_suppyrRS_to_supLTS, \ compallow_suppyrRS_to_supLTS, display, "com_suppyrRS_to_supLTS") com_suppyrRS_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_suppyrRS_to_spinstell, \ ncompallow_suppyrRS_to_spinstell, \ compallow_suppyrRS_to_spinstell, display, "com_suppyrRS_to_spinstell") com_suppyrRS_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_suppyrRS_to_tuftIB , \ ncompallow_suppyrRS_to_tuftIB , \ compallow_suppyrRS_to_tuftIB , display, "com_suppyrRS_to_tuftIB") com_suppyrRS_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_suppyrRS_to_tuftRS , \ ncompallow_suppyrRS_to_tuftRS , \ compallow_suppyrRS_to_tuftRS , display, "com_suppyrRS_to_tuftRS") com_suppyrRS_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_suppyrRS_to_deepbask , \ ncompallow_suppyrRS_to_deepbask , \ compallow_suppyrRS_to_deepbask , display, "com_suppyrRS_to_deepbask") com_suppyrRS_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_suppyrRS_to_deepaxax , \ ncompallow_suppyrRS_to_deepaxax , \ compallow_suppyrRS_to_deepaxax , display, "com_suppyrRS_to_deepaxax") com_suppyrRS_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_suppyrRS_to_deepLTS , \ ncompallow_suppyrRS_to_deepLTS , \ compallow_suppyrRS_to_deepLTS , display, "com_suppyrRS_to_deepLTS") com_suppyrRS_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_suppyrRS_to_nontuftRS, \ ncompallow_suppyrRS_to_nontuftRS, \ compallow_suppyrRS_to_nontuftRS, display, "com_suppyrRS_to_nontuftRS") com_suppyrFRB_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_suppyrFRB_to_suppyrRS , \ ncompallow_suppyrFRB_to_suppyrRS , \ compallow_suppyrFRB_to_suppyrRS , display, "com_suppyrFRB_to_suppyrRS") com_suppyrFRB_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_suppyrFRB_to_suppyrFRB, \ ncompallow_suppyrFRB_to_suppyrFRB, \ compallow_suppyrFRB_to_suppyrFRB, display, "com_suppyrFRB_to_suppyrFRB") com_suppyrFRB_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_suppyrFRB_to_supbask , \ ncompallow_suppyrFRB_to_supbask , \ compallow_suppyrFRB_to_supbask , display, "com_suppyrFRB_to_supbask") com_suppyrFRB_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_suppyrFRB_to_supaxax , \ ncompallow_suppyrFRB_to_supaxax , \ compallow_suppyrFRB_to_supaxax , display, "com_suppyrFRB_to_supaxax") com_suppyrFRB_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_suppyrFRB_to_supLTS , \ ncompallow_suppyrFRB_to_supLTS , \ compallow_suppyrFRB_to_supLTS , display, "com_suppyrFRB_to_supLTS") com_suppyrFRB_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_suppyrFRB_to_spinstell, \ ncompallow_suppyrFRB_to_spinstell, \ compallow_suppyrFRB_to_spinstell, display, "com_suppyrFRB_to_spinstell") com_suppyrFRB_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_suppyrFRB_to_tuftIB , \ ncompallow_suppyrFRB_to_tuftIB , \ compallow_suppyrFRB_to_tuftIB , display, "com_suppyrFRB_to_tuftIB") com_suppyrFRB_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_suppyrFRB_to_tuftRS , \ ncompallow_suppyrFRB_to_tuftRS , \ compallow_suppyrFRB_to_tuftRS , display, "com_suppyrFRB_to_tuftRS") com_suppyrFRB_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_suppyrFRB_to_deepbask , \ ncompallow_suppyrFRB_to_deepbask , \ compallow_suppyrFRB_to_deepbask , display, "com_suppyrFRB_to_deepbask") com_suppyrFRB_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_suppyrFRB_to_deepaxax , \ ncompallow_suppyrFRB_to_deepaxax , \ compallow_suppyrFRB_to_deepaxax , display, "com_suppyrFRB_to_deepaxax") com_suppyrFRB_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_suppyrFRB_to_deepLTS , \ ncompallow_suppyrFRB_to_deepLTS , \ compallow_suppyrFRB_to_deepLTS , display, "com_suppyrFRB_to_deepLTS") com_suppyrFRB_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_suppyrFRB_to_nontuftRS, \ ncompallow_suppyrFRB_to_nontuftRS, \ compallow_suppyrFRB_to_nontuftRS, display, "com_suppyrFRB_to_nontuftRS") com_supbask_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_supbask_to_suppyrRS , \ ncompallow_supbask_to_suppyrRS , \ compallow_supbask_to_suppyrRS , display, "com_supbask_to_suppyrRS") com_supbask_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_supbask_to_suppyrFRB, \ ncompallow_supbask_to_suppyrFRB, \ compallow_supbask_to_suppyrFRB, display, "com_supbask_to_suppyrFRB") com_supbask_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_supbask_to_supbask , \ ncompallow_supbask_to_supbask , \ compallow_supbask_to_supbask , display, "com_supbask_to_supbask") com_supbask_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_supbask_to_supaxax , \ ncompallow_supbask_to_supaxax , \ compallow_supbask_to_supaxax , display, "com_supbask_to_supaxax") com_supbask_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_supbask_to_supLTS , \ ncompallow_supbask_to_supLTS , \ compallow_supbask_to_supLTS , display, "com_supbask_to_supLTS") com_supbask_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_supbask_to_spinstell, \ ncompallow_supbask_to_spinstell, \ compallow_supbask_to_spinstell, display, "com_supbask_to_spinstell") // com_supaxax_to_suppyrRS = synaptic_compmap_construct (thisno, // num_suppyrRS , // num_supaxax_to_suppyrRS , // ncompallow_supaxax_to_suppyrRS , // compallow_supaxax_to_suppyrRS , display, "com_supaxax_to_suppyrRS") // com_supaxax_to_suppyrFRB = synaptic_compmap_construct (thisno, // num_suppyrFRB, // num_supaxax_to_suppyrFRB, // ncompallow_supaxax_to_suppyrFRB, // compallow_supaxax_to_suppyrFRB, display, "com_supaxax_to_suppyrFRB") // com_supaxax_to_spinstell = synaptic_compmap_construct (thisno, // num_spinstell, // num_supaxax_to_spinstell, // ncompallow_supaxax_to_spinstell, // compallow_supaxax_to_spinstell, display, "com_supaxax_to_spinstell") // com_supaxax_to_tuftIB = synaptic_compmap_construct (thisno, // num_tuftIB , // num_supaxax_to_tuftIB , // ncompallow_supaxax_to_tuftIB , // compallow_supaxax_to_tuftIB , display, "com_supaxax_to_tuftIB") // com_supaxax_to_tuftRS = synaptic_compmap_construct (thisno, // num_tuftRS , // num_supaxax_to_tuftRS , // ncompallow_supaxax_to_tuftRS , // compallow_supaxax_to_tuftRS , display, "com_supaxax_to_tuftRS") // com_supaxax_to_nontuftRS = synaptic_compmap_construct (thisno, // num_nontuftRS, // num_supaxax_to_nontuftRS, // ncompallow_supaxax_to_nontuftRS, // compallow_supaxax_to_nontuftRS, display, "com_supaxax_to_nontuftRS") com_supLTS_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_supLTS_to_suppyrRS , \ ncompallow_supLTS_to_suppyrRS , \ compallow_supLTS_to_suppyrRS , display, "com_supLTS_to_suppyrRS") com_supLTS_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_supLTS_to_suppyrFRB, \ ncompallow_supLTS_to_suppyrFRB, \ compallow_supLTS_to_suppyrFRB, display, "com_supLTS_to_suppyrFRB") com_supLTS_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_supLTS_to_supbask , \ ncompallow_supLTS_to_supbask , \ compallow_supLTS_to_supbask , display, "com_supLTS_to_supbask") com_supLTS_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_supLTS_to_supaxax , \ ncompallow_supLTS_to_supaxax , \ compallow_supLTS_to_supaxax , display, "com_supLTS_to_supaxax") com_supLTS_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_supLTS_to_supLTS , \ ncompallow_supLTS_to_supLTS , \ compallow_supLTS_to_supLTS , display, "com_supLTS_to_supLTS") com_supLTS_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_supLTS_to_spinstell, \ ncompallow_supLTS_to_spinstell, \ compallow_supLTS_to_spinstell, display, "com_supLTS_to_spinstell") com_supLTS_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_supLTS_to_tuftIB , \ ncompallow_supLTS_to_tuftIB , \ compallow_supLTS_to_tuftIB , display, "com_supLTS_to_tuftIB") com_supLTS_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_supLTS_to_tuftRS , \ ncompallow_supLTS_to_tuftRS , \ compallow_supLTS_to_tuftRS , display, "com_supLTS_to_tuftRS") com_supLTS_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_supLTS_to_deepbask , \ ncompallow_supLTS_to_deepbask , \ compallow_supLTS_to_deepbask , display, "com_supLTS_to_deepbask") com_supLTS_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_supLTS_to_deepaxax , \ ncompallow_supLTS_to_deepaxax , \ compallow_supLTS_to_deepaxax , display, "com_supLTS_to_deepaxax") com_supLTS_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_supLTS_to_deepLTS , \ ncompallow_supLTS_to_deepLTS , \ compallow_supLTS_to_deepLTS , display, "com_supLTS_to_deepLTS") com_supLTS_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_supLTS_to_nontuftRS, \ ncompallow_supLTS_to_nontuftRS, \ compallow_supLTS_to_nontuftRS, display, "com_supLTS_to_nontuftRS") com_spinstell_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_spinstell_to_suppyrRS , \ ncompallow_spinstell_to_suppyrRS , \ compallow_spinstell_to_suppyrRS , display, "com_spinstell_to_suppyrRS") com_spinstell_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_spinstell_to_suppyrFRB, \ ncompallow_spinstell_to_suppyrFRB, \ compallow_spinstell_to_suppyrFRB, display, "com_spinstell_to_suppyrFRB") com_spinstell_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_spinstell_to_supbask , \ ncompallow_spinstell_to_supbask , \ compallow_spinstell_to_supbask , display, "com_spinstell_to_supbask") com_spinstell_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_spinstell_to_supaxax , \ ncompallow_spinstell_to_supaxax , \ compallow_spinstell_to_supaxax , display, "com_spinstell_to_supaxax") com_spinstell_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_spinstell_to_supLTS , \ ncompallow_spinstell_to_supLTS , \ compallow_spinstell_to_supLTS , display, "com_spinstell_to_supLTS") com_spinstell_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_spinstell_to_spinstell, \ ncompallow_spinstell_to_spinstell, \ compallow_spinstell_to_spinstell, display, "com_spinstell_to_spinstell") com_spinstell_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_spinstell_to_tuftIB , \ ncompallow_spinstell_to_tuftIB , \ compallow_spinstell_to_tuftIB , display, "com_spinstell_to_tuftIB") com_spinstell_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_spinstell_to_tuftRS , \ ncompallow_spinstell_to_tuftRS , \ compallow_spinstell_to_tuftRS , display, "com_spinstell_to_tuftRS") com_spinstell_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_spinstell_to_deepbask , \ ncompallow_spinstell_to_deepbask , \ compallow_spinstell_to_deepbask , display, "com_spinstell_to_deepbask") com_spinstell_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_spinstell_to_deepaxax , \ ncompallow_spinstell_to_deepaxax , \ compallow_spinstell_to_deepaxax , display, "com_spinstell_to_deepaxax") com_spinstell_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_spinstell_to_deepLTS , \ ncompallow_spinstell_to_deepLTS , \ compallow_spinstell_to_deepLTS , display, "com_spinstell_to_deepLTS") com_spinstell_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_spinstell_to_nontuftRS, \ ncompallow_spinstell_to_nontuftRS, \ compallow_spinstell_to_nontuftRS, display, "com_spinstell_to_nontuftRS") com_tuftIB_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_tuftIB_to_suppyrRS , \ ncompallow_tuftIB_to_suppyrRS , \ compallow_tuftIB_to_suppyrRS , display, "com_tuftIB_to_suppyrRS") com_tuftIB_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_tuftIB_to_suppyrFRB, \ ncompallow_tuftIB_to_suppyrFRB, \ compallow_tuftIB_to_suppyrFRB, display, "com_tuftIB_to_suppyrFRB") com_tuftIB_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_tuftIB_to_supbask , \ ncompallow_tuftIB_to_supbask , \ compallow_tuftIB_to_supbask , display, "com_tuftIB_to_supbask") com_tuftIB_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_tuftIB_to_supaxax , \ ncompallow_tuftIB_to_supaxax , \ compallow_tuftIB_to_supaxax , display, "com_tuftIB_to_supaxax") com_tuftIB_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_tuftIB_to_supLTS , \ ncompallow_tuftIB_to_supLTS , \ compallow_tuftIB_to_supLTS , display, "com_tuftIB_to_supLTS") com_tuftIB_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_tuftIB_to_spinstell, \ ncompallow_tuftIB_to_spinstell, \ compallow_tuftIB_to_spinstell, display, "com_tuftIB_to_spinstell") com_tuftIB_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_tuftIB_to_tuftIB , \ ncompallow_tuftIB_to_tuftIB , \ compallow_tuftIB_to_tuftIB , display, "com_tuftIB_to_tuftIB") com_tuftIB_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_tuftIB_to_tuftRS , \ ncompallow_tuftIB_to_tuftRS , \ compallow_tuftIB_to_tuftRS , display, "com_tuftIB_to_tuftRS") com_tuftIB_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_tuftIB_to_deepbask , \ ncompallow_tuftIB_to_deepbask , \ compallow_tuftIB_to_deepbask , display, "com_tuftIB_to_deepbask") com_tuftIB_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_tuftIB_to_deepaxax , \ ncompallow_tuftIB_to_deepaxax , \ compallow_tuftIB_to_deepaxax , display, "com_tuftIB_to_deepaxax") com_tuftIB_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_tuftIB_to_deepLTS , \ ncompallow_tuftIB_to_deepLTS , \ compallow_tuftIB_to_deepLTS , display, "com_tuftIB_to_deepLTS") com_tuftIB_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_tuftIB_to_nontuftRS, \ ncompallow_tuftIB_to_nontuftRS, \ compallow_tuftIB_to_nontuftRS, display, "com_tuftIB_to_nontuftRS") com_tuftRS_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_tuftRS_to_suppyrRS , \ ncompallow_tuftRS_to_suppyrRS , \ compallow_tuftRS_to_suppyrRS , display, "com_tuftRS_to_suppyrRS") com_tuftRS_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_tuftRS_to_suppyrFRB, \ ncompallow_tuftRS_to_suppyrFRB, \ compallow_tuftRS_to_suppyrFRB, display, "com_tuftRS_to_suppyrFRB") com_tuftRS_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_tuftRS_to_supbask , \ ncompallow_tuftRS_to_supbask , \ compallow_tuftRS_to_supbask , display, "com_tuftRS_to_supbask") com_tuftRS_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_tuftRS_to_supaxax , \ ncompallow_tuftRS_to_supaxax , \ compallow_tuftRS_to_supaxax , display, "com_tuftRS_to_supaxax") com_tuftRS_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_tuftRS_to_supLTS , \ ncompallow_tuftRS_to_supLTS , \ compallow_tuftRS_to_supLTS , display, "com_tuftRS_to_supLTS") com_tuftRS_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_tuftRS_to_spinstell, \ ncompallow_tuftRS_to_spinstell, \ compallow_tuftRS_to_spinstell, display, "com_tuftRS_to_spinstell") com_tuftRS_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_tuftRS_to_tuftIB , \ ncompallow_tuftRS_to_tuftIB , \ compallow_tuftRS_to_tuftIB , display, "com_tuftRS_to_tuftIB") com_tuftRS_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_tuftRS_to_tuftRS , \ ncompallow_tuftRS_to_tuftRS , \ compallow_tuftRS_to_tuftRS , display, "com_tuftRS_to_tuftRS") com_tuftRS_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_tuftRS_to_deepbask , \ ncompallow_tuftRS_to_deepbask , \ compallow_tuftRS_to_deepbask , display, "com_tuftRS_to_deepbask") com_tuftRS_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_tuftRS_to_deepaxax , \ ncompallow_tuftRS_to_deepaxax , \ compallow_tuftRS_to_deepaxax , display, "com_tuftRS_to_deepaxax") com_tuftRS_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_tuftRS_to_deepLTS , \ ncompallow_tuftRS_to_deepLTS , \ compallow_tuftRS_to_deepLTS , display, "com_tuftRS_to_deepLTS") com_tuftRS_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_tuftRS_to_nontuftRS, \ ncompallow_tuftRS_to_nontuftRS, \ compallow_tuftRS_to_nontuftRS, display, "com_tuftRS_to_nontuftRS") com_deepbask_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_deepbask_to_spinstell, \ ncompallow_deepbask_to_spinstell, \ compallow_deepbask_to_spinstell, display, "com_deepbask_to_spinstell") com_deepbask_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_deepbask_to_tuftIB , \ ncompallow_deepbask_to_tuftIB , \ compallow_deepbask_to_tuftIB , display, "com_deepbask_to_tuftIB") com_deepbask_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_deepbask_to_tuftRS , \ ncompallow_deepbask_to_tuftRS , \ compallow_deepbask_to_tuftRS , display, "com_deepbask_to_tuftRS") com_deepbask_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_deepbask_to_deepbask , \ ncompallow_deepbask_to_deepbask , \ compallow_deepbask_to_deepbask , display, "com_deepbask_to_deepbask") com_deepbask_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_deepbask_to_deepaxax , \ ncompallow_deepbask_to_deepaxax , \ compallow_deepbask_to_deepaxax , display, "com_deepbask_to_deepaxax") com_deepbask_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_deepbask_to_deepLTS , \ ncompallow_deepbask_to_deepLTS , \ compallow_deepbask_to_deepLTS , display, "com_deepbask_to_deepLTS") com_deepbask_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_deepbask_to_nontuftRS, \ ncompallow_deepbask_to_nontuftRS, \ compallow_deepbask_to_nontuftRS, display, "com_deepbask_to_nontuftRS") // com_deepaxax_to_suppyrRS = synaptic_compmap_construct (thisno, // num_suppyrRS , // num_deepaxax_to_suppyrRS , // ncompallow_deepaxax_to_suppyrRS , // compallow_deepaxax_to_suppyrRS , display, "com_deepaxax_to_suppyrRS") // com_deepaxax_to_suppyrFRB = synaptic_compmap_construct (thisno, // num_suppyrFRB, // num_deepaxax_to_suppyrFRB, // ncompallow_deepaxax_to_suppyrFRB, // compallow_deepaxax_to_suppyrFRB, display, "com_deepaxax_to_suppyrFRB") // com_deepaxax_to_spinstell = synaptic_compmap_construct (thisno, // num_spinstell, // num_deepaxax_to_spinstell, // ncompallow_deepaxax_to_spinstell, // compallow_deepaxax_to_spinstell, display, "com_deepaxax_to_spinstell") // com_deepaxax_to_tuftIB = synaptic_compmap_construct (thisno, // num_tuftIB , // num_deepaxax_to_tuftIB , // ncompallow_deepaxax_to_tuftIB , // compallow_deepaxax_to_tuftIB , display, "com_deepaxax_to_tuftIB") // com_deepaxax_to_tuftRS = synaptic_compmap_construct (thisno, // num_tuftRS , // num_deepaxax_to_tuftRS , // ncompallow_deepaxax_to_tuftRS , // compallow_deepaxax_to_tuftRS , display, "com_deepaxax_to_tuftRS") // com_deepaxax_to_nontuftRS = synaptic_compmap_construct (thisno, // num_nontuftRS, // num_deepaxax_to_nontuftRS, // ncompallow_deepaxax_to_nontuftRS, // compallow_deepaxax_to_nontuftRS, display, "com_deepaxax_to_nontuftRS") com_deepLTS_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_deepLTS_to_suppyrRS , \ ncompallow_deepLTS_to_suppyrRS , \ compallow_deepLTS_to_suppyrRS , display, "com_deepLTS_to_suppyrRS") com_deepLTS_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_deepLTS_to_suppyrFRB, \ ncompallow_deepLTS_to_suppyrFRB, \ compallow_deepLTS_to_suppyrFRB, display, "com_deepLTS_to_suppyrFRB") com_deepLTS_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_deepLTS_to_supbask , \ ncompallow_deepLTS_to_supbask , \ compallow_deepLTS_to_supbask , display, "com_deepLTS_to_supbask") com_deepLTS_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_deepLTS_to_supaxax , \ ncompallow_deepLTS_to_supaxax , \ compallow_deepLTS_to_supaxax , display, "com_deepLTS_to_supaxax") com_deepLTS_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_deepLTS_to_supLTS , \ ncompallow_deepLTS_to_supLTS , \ compallow_deepLTS_to_supLTS , display, "com_deepLTS_to_supLTS") com_deepLTS_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_deepLTS_to_spinstell, \ ncompallow_deepLTS_to_spinstell, \ compallow_deepLTS_to_spinstell, display, "com_deepLTS_to_spinstell") com_deepLTS_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_deepLTS_to_tuftIB , \ ncompallow_deepLTS_to_tuftIB , \ compallow_deepLTS_to_tuftIB , display, "com_deepLTS_to_tuftIB") com_deepLTS_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_deepLTS_to_tuftRS , \ ncompallow_deepLTS_to_tuftRS , \ compallow_deepLTS_to_tuftRS , display, "com_deepLTS_to_tuftRS") com_deepLTS_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_deepLTS_to_deepbask , \ ncompallow_deepLTS_to_deepbask , \ compallow_deepLTS_to_deepbask , display, "com_deepLTS_to_deepbask") com_deepLTS_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_deepLTS_to_deepaxax , \ ncompallow_deepLTS_to_deepaxax , \ compallow_deepLTS_to_deepaxax , display, "com_deepLTS_to_deepaxax") com_deepLTS_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_deepLTS_to_deepLTS , \ ncompallow_deepLTS_to_deepLTS , \ compallow_deepLTS_to_deepLTS , display, "com_deepLTS_to_deepLTS") com_deepLTS_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_deepLTS_to_nontuftRS, \ ncompallow_deepLTS_to_nontuftRS, \ compallow_deepLTS_to_nontuftRS, display, "com_deepLTS_to_nontuftRS") com_TCR_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_TCR_to_suppyrRS , \ ncompallow_TCR_to_suppyrRS , \ compallow_TCR_to_suppyrRS , display, "com_TCR_to_suppyrRS") com_TCR_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_TCR_to_suppyrFRB, \ ncompallow_TCR_to_suppyrFRB, \ compallow_TCR_to_suppyrFRB, display, "com_TCR_to_suppyrFRB") com_TCR_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_TCR_to_supbask , \ ncompallow_TCR_to_supbask , \ compallow_TCR_to_supbask , display, "com_TCR_to_supbask") com_TCR_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_TCR_to_supaxax , \ ncompallow_TCR_to_supaxax , \ compallow_TCR_to_supaxax , display, "com_TCR_to_supaxax") com_TCR_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_TCR_to_spinstell, \ ncompallow_TCR_to_spinstell, \ compallow_TCR_to_spinstell, display, "com_TCR_to_spinstell") com_TCR_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_TCR_to_tuftIB , \ ncompallow_TCR_to_tuftIB , \ compallow_TCR_to_tuftIB , display, "com_TCR_to_tuftIB") if (pmesg) print "com_TCR_to_tuftRS" com_TCR_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_TCR_to_tuftRS , \ ncompallow_TCR_to_tuftRS , \ compallow_TCR_to_tuftRS , display, "com_TCR_to_tuftRS") com_TCR_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_TCR_to_deepbask , \ ncompallow_TCR_to_deepbask , \ compallow_TCR_to_deepbask , display, "com_TCR_to_deepbask") com_TCR_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_TCR_to_deepaxax , \ ncompallow_TCR_to_deepaxax , \ compallow_TCR_to_deepaxax , display, "com_TCR_to_deepaxax") com_TCR_to_nRT = synaptic_compmap_construct (thisno, \ num_nRT , \ num_TCR_to_nRT , \ ncompallow_TCR_to_nRT , \ compallow_TCR_to_nRT , display, "com_TCR_to_nRT") com_TCR_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_TCR_to_nontuftRS, \ ncompallow_TCR_to_nontuftRS, \ compallow_TCR_to_nontuftRS, display, "com_TCR_to_nontuftRS") com_nRT_to_TCR = synaptic_compmap_construct (thisno, \ num_TCR , \ num_nRT_to_TCR , \ ncompallow_nRT_to_TCR , \ compallow_nRT_to_TCR , display, "com_nRT_to_TCR") com_nRT_to_nRT = synaptic_compmap_construct (thisno, \ num_nRT , \ num_nRT_to_nRT , \ ncompallow_nRT_to_nRT , \ compallow_nRT_to_nRT , display, "com_nRT_to_nRT") com_nontuftRS_to_suppyrRS = synaptic_compmap_construct (thisno, \ num_suppyrRS , \ num_nontuftRS_to_suppyrRS , \ ncompallow_nontuftRS_to_suppyrRS , \ compallow_nontuftRS_to_suppyrRS , display, "com_nontuftRS_to_suppyrRS") com_nontuftRS_to_suppyrFRB = synaptic_compmap_construct (thisno, \ num_suppyrFRB, \ num_nontuftRS_to_suppyrFRB, \ ncompallow_nontuftRS_to_suppyrFRB, \ compallow_nontuftRS_to_suppyrFRB, display, "com_nontuftRS_to_suppyrFRB") com_nontuftRS_to_supbask = synaptic_compmap_construct (thisno, \ num_supbask , \ num_nontuftRS_to_supbask , \ ncompallow_nontuftRS_to_supbask , \ compallow_nontuftRS_to_supbask , display, "com_nontuftRS_to_supbask") com_nontuftRS_to_supaxax = synaptic_compmap_construct (thisno, \ num_supaxax , \ num_nontuftRS_to_supaxax , \ ncompallow_nontuftRS_to_supaxax , \ compallow_nontuftRS_to_supaxax , display, "com_nontuftRS_to_supaxax") com_nontuftRS_to_supLTS = synaptic_compmap_construct (thisno, \ num_supLTS , \ num_nontuftRS_to_supLTS , \ ncompallow_nontuftRS_to_supLTS , \ compallow_nontuftRS_to_supLTS , display, "com_nontuftRS_to_supLTS") com_nontuftRS_to_spinstell = synaptic_compmap_construct (thisno, \ num_spinstell, \ num_nontuftRS_to_spinstell, \ ncompallow_nontuftRS_to_spinstell, \ compallow_nontuftRS_to_spinstell, display, "com_nontuftRS_to_spinstell") com_nontuftRS_to_tuftIB = synaptic_compmap_construct (thisno, \ num_tuftIB , \ num_nontuftRS_to_tuftIB , \ ncompallow_nontuftRS_to_tuftIB , \ compallow_nontuftRS_to_tuftIB , display, "com_nontuftRS_to_tuftIB") com_nontuftRS_to_tuftRS = synaptic_compmap_construct (thisno, \ num_tuftRS , \ num_nontuftRS_to_tuftRS , \ ncompallow_nontuftRS_to_tuftRS , \ compallow_nontuftRS_to_tuftRS , display, "com_nontuftRS_to_tuftRS") com_nontuftRS_to_deepbask = synaptic_compmap_construct (thisno, \ num_deepbask , \ num_nontuftRS_to_deepbask , \ ncompallow_nontuftRS_to_deepbask , \ compallow_nontuftRS_to_deepbask , display, "com_nontuftRS_to_deepbask") com_nontuftRS_to_deepaxax = synaptic_compmap_construct (thisno, \ num_deepaxax , \ num_nontuftRS_to_deepaxax , \ ncompallow_nontuftRS_to_deepaxax , \ compallow_nontuftRS_to_deepaxax , display, "com_nontuftRS_to_deepaxax") com_nontuftRS_to_deepLTS = synaptic_compmap_construct (thisno, \ num_deepLTS , \ num_nontuftRS_to_deepLTS , \ ncompallow_nontuftRS_to_deepLTS , \ compallow_nontuftRS_to_deepLTS , display, "com_nontuftRS_to_deepLTS") com_nontuftRS_to_TCR = synaptic_compmap_construct (thisno, \ num_TCR , \ num_nontuftRS_to_TCR , \ ncompallow_nontuftRS_to_TCR , \ compallow_nontuftRS_to_TCR , display, "com_nontuftRS_to_TCR") com_nontuftRS_to_nRT = synaptic_compmap_construct (thisno, \ num_nRT , \ num_nontuftRS_to_nRT , \ ncompallow_nontuftRS_to_nRT , \ compallow_nontuftRS_to_nRT , display, "com_nontuftRS_to_nRT") com_nontuftRS_to_nontuftRS = synaptic_compmap_construct (thisno, \ num_nontuftRS, \ num_nontuftRS_to_nontuftRS, \ ncompallow_nontuftRS_to_nontuftRS, \ compallow_nontuftRS_to_nontuftRS, display, "com_nontuftRS_to_nontuftRS") ///////////////////////////////////////////////////////// // Finished construction of synaptic compartment maps. // ///////////////////////////////////////////////////////// // // Construct gap-junction tables // ///////////////////////////////////////////////////////// if (pmesg) print "Construct gap-junction tables" // axax interneurons a special case // Note: since these reflect that in the FORTRAN code perhaps // only the first and second cells in each group were at one time // (note that their total number of gj's is zero) // connected together in compartment's 12, we are refraining // from doing anything in NEURON. If it desired to add these connections // later it should be a simple manner of either supplying specific NEURON // code to do it or adding the more generalized code from another cell type // for more extensive connections. gjtable_supaxax.x(1,1) = 1 gjtable_supaxax.x(1,2) = 12 gjtable_supaxax.x(1,3) = 2 gjtable_supaxax.x(1,4) = 12 gjtable_deepaxax.x(1,1) = 1 gjtable_deepaxax.x(1,2) = 12 gjtable_deepaxax.x(1,3) = 2 gjtable_deepaxax.x(1,4) = 12 // end special case. {localloadfile("groucho_gapbld.hoc")} {localloadfile("groucho_gapbld_mix.hoc")} gjtable_suppyrRS = groucho_gapbld (thisno, num_suppyrRS, \ totaxgj_suppyrRS , \ table_axgjcompallow_suppyrRS, \ num_axgjcompallow_suppyrRS, 0) // create gap junctions: the below comments reply to all the below but are only listed here for simplicity objref suppyrRS_gap[2*totaxgj_suppyrRS+1] // two _gap's per gap junct with fortran indicies // it is less confusing to have all FORTRAN indicies // here, than mixing FORTRAN and C style inidicies, since the tables are in FORTRAN indicies. // note suppyrRS_gap[0] is unused for i=1, totaxgj_suppyrRS { if (serial) { cellobj(gjtable_suppyrRS.x[i][1]+suppyrRS_base).comp[gjtable_suppyrRS.x[i][2]] suppyrRS_gap[i] = new gGap(0.5) cellobj(gjtable_suppyrRS.x[i][3]+suppyrRS_base).comp[gjtable_suppyrRS.x[i][4]] suppyrRS_gap[i+totaxgj_suppyrRS] = new gGap(0.5) suppyrRS_gap[i].g = gapcon_suppyrRS // units? suppyrRS_gap[i+totaxgj_suppyrRS].g = gapcon_suppyrRS setpointer suppyrRS_gap[i].vgap, cellobj(gjtable_suppyrRS.x[i][3]+suppyrRS_base).comp[gjtable_suppyrRS.x[i][4]].v(0.5) setpointer suppyrRS_gap[i+totaxgj_suppyrRS].vgap, cellobj(gjtable_suppyrRS.x[i][1]+suppyrRS_base).comp[gjtable_suppyrRS.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_suppyrRS.x[i][1]+suppyrRS_base, \ gjtable_suppyrRS.x[i][2], \ gjtable_suppyrRS.x[i][3]+suppyrRS_base, \ gjtable_suppyrRS.x[i][4], gapcon_suppyrRS) } } ///////////////////////////////////// gjtable_suppyrFRB = groucho_gapbld (thisno, num_suppyrFRB, \ totaxgj_suppyrFRB , \ table_axgjcompallow_suppyrFRB, \ num_axgjcompallow_suppyrFRB, 0) // create gap junctions in same cell class objref suppyrFRB_gap[2*totaxgj_suppyrFRB+1] // two _gap's per gap junct with fortran indicies // note suppyrFRB_gap[0] is unused for i=1, totaxgj_suppyrFRB { if (serial) { cellobj(gjtable_suppyrFRB.x[i][1]+suppyrFRB_base).comp[gjtable_suppyrFRB.x[i][2]] suppyrFRB_gap[i] = new gGap(0.5) cellobj(gjtable_suppyrFRB.x[i][3]+suppyrFRB_base).comp[gjtable_suppyrFRB.x[i][4]] suppyrFRB_gap[i+totaxgj_suppyrFRB] = new gGap(0.5) suppyrFRB_gap[i].g = gapcon_suppyrFRB // units? suppyrFRB_gap[i+totaxgj_suppyrFRB].g = gapcon_suppyrFRB setpointer suppyrFRB_gap[i].vgap, cellobj(gjtable_suppyrFRB.x[i][3]+suppyrFRB_base).comp[gjtable.x[i][4]].v(0.5) setpointer suppyrFRB_gap[i+totaxgj_suppyrFRB].vgap, cellobj(gjtable_suppyrFRB.x[i][1]+suppyrFRB_base).comp[gjtable_suppyrFRB.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_suppyrFRB.x[i][1]+suppyrFRB_base, \ gjtable_suppyrFRB.x[i][2], \ gjtable_suppyrFRB.x[i][3]+suppyrFRB_base, \ gjtable_suppyrFRB.x[i][4], gapcon_suppyrFRB) } } ///////////////////////////////////// gjtable_suppyr = groucho_gapbld_mix (thisno, num_suppyrRS, \ num_suppyrFRB, totaxgj_suppyr, \ table_axgjcompallow_suppyrRS, \ num_axgjcompallow_suppyrRS, 0) gapcon_suppyr = gapcon_suppyrRS // NEURON variable only // create (mixed) gap junctions between two cell classes objref suppyr_gap[2*totaxgj_suppyr+1] // two _gap's per gap junct with fortran indicies, cell types share total number of gj's // note suppyr_gap[0] is unused for i=1, totaxgj_suppyr { if (serial) { cellobj(gjtable_suppyr.x[i][1]+suppyrRS_base).comp[gjtable_suppyr.x[i][2]] suppyr_gap[i] = new gGap(0.5) // suppyrRS end cellobj(gjtable_suppyr.x[i][3]+suppyrFRB_base).comp[gjtable_suppyr.x[i][4]] suppyr_gap[i+totaxgj_suppyr] = new gGap(0.5) // suppyrFRB end suppyr_gap[i].g = gapcon_suppyr // r for a gj point process located on RS. units? suppyr_gap[i+totaxgj_suppyr].g = gapcon_suppyr // r for a gj point process located on FRB setpointer suppyr_gap[i].vgap, cellobj(gjtable_suppyr.x[i][3]+suppyrFRB_base).comp[gjtable_suppyr.x[i][4]].v(0.5) setpointer suppyr_gap[i+totaxgj_suppyr].vgap, cellobj(gjtable_suppyr.x[i][1]+suppyrRS_base).comp[gjtable_suppyr.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_suppyr.x[i][1]+suppyrRS_base, \ gjtable_suppyr.x[i][2], \ gjtable_suppyr.x[i][3]+suppyrFRB_base, \ gjtable_suppyr.x[i][4], gapcon_suppyr) } } ///////////////////////////////////// gjtable_spinstell = groucho_gapbld (thisno, num_spinstell, \ totaxgj_spinstell , \ table_axgjcompallow_spinstell, \ num_axgjcompallow_spinstell, 0) // create gap junctions in same cell class objref spinstell_gap[2*totaxgj_spinstell+1] // two _gap's per gap junct with fortran indicies // note spinstell_gap[0] is unused for i=1, totaxgj_spinstell { if (serial) { cellobj(gjtable_spinstell.x[i][1]+spinstell_base).comp[gjtable_spinstell.x[i][2]] spinstell_gap[i] = new gGap(0.5) cellobj(gjtable_spinstell.x[i][3]+spinstell_base).comp[gjtable_spinstell.x[i][4]] spinstell_gap[i+totaxgj_spinstell] = new gGap(0.5) spinstell_gap[i].g = gapcon_spinstell // units? spinstell_gap[i+totaxgj_spinstell].g = gapcon_spinstell setpointer spinstell_gap[i].vgap, cellobj(gjtable_spinstell.x[i][3]+spinstell_base).comp[gjtable.x[i][4]].v(0.5) setpointer spinstell_gap[i+totaxgj_spinstell].vgap, cellobj(gjtable_spinstell.x[i][1]+spinstell_base).comp[gjtable_spinstell.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_spinstell.x[i][1]+spinstell_base, \ gjtable_spinstell.x[i][2], \ gjtable_spinstell.x[i][3]+spinstell_base, \ gjtable_spinstell.x[i][4], gapcon_spinstell) } } ///////////////////////////////////// gjtable_tuftIB = groucho_gapbld (thisno, num_tuftIB, \ totaxgj_tuftIB , \ table_axgjcompallow_tuftIB , \ num_axgjcompallow_tuftIB , 0) // create gap junctions in same cell class objref tuftIB_gap[2*totaxgj_tuftIB+1] // two _gap's per gap junct with fortran indicies // note tuftIB_gap[0] is unused for i=1, totaxgj_tuftIB { if (serial) { cellobj(gjtable_tuftIB.x[i][1]+tuftIB_base).comp[gjtable_tuftIB.x[i][2]] tuftIB_gap[i] = new gGap(0.5) cellobj(gjtable_tuftIB.x[i][3]+tuftIB_base).comp[gjtable_tuftIB.x[i][4]] tuftIB_gap[i+totaxgj_tuftIB] = new gGap(0.5) tuftIB_gap[i].g = gapcon_tuftIB // units? tuftIB_gap[i+totaxgj_tuftIB].g = gapcon_tuftIB setpointer tuftIB_gap[i].vgap, cellobj(gjtable_tuftIB.x[i][3]+tuftIB_base).comp[gjtable.x[i][4]].v(0.5) setpointer tuftIB_gap[i+totaxgj_tuftIB].vgap, cellobj(gjtable_tuftIB.x[i][1]+tuftIB_base).comp[gjtable_tuftIB.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_tuftIB.x[i][1]+tuftIB_base, \ gjtable_tuftIB.x[i][2], \ gjtable_tuftIB.x[i][3]+tuftIB_base, \ gjtable_tuftIB.x[i][4], gapcon_tuftIB) } } ///////////////////////////////////// gjtable_tuftRS = groucho_gapbld (thisno, num_tuftRS, \ totaxgj_tuftRS , \ table_axgjcompallow_tuftRS , \ num_axgjcompallow_tuftRS , 0) // create gap junctions in same cell class objref tuftRS_gap[2*totaxgj_tuftRS+1] // two _gap's per gap junct with fortran indicies // note tuftRS_gap[0] is unused for i=1, totaxgj_tuftRS { if (serial) { cellobj(gjtable_tuftRS.x[i][1]+tuftRS_base).comp[gjtable_tuftRS.x[i][2]] tuftRS_gap[i] = new gGap(0.5) cellobj(gjtable_tuftRS.x[i][3]+tuftRS_base).comp[gjtable_tuftRS.x[i][4]] tuftRS_gap[i+totaxgj_tuftRS] = new gGap(0.5) tuftRS_gap[i].g = gapcon_tuftRS // units? tuftRS_gap[i+totaxgj_tuftRS].g = gapcon_tuftRS setpointer tuftRS_gap[i].vgap, cellobj(gjtable_tuftRS.x[i][3]+tuftRS_base).comp[gjtable.x[i][4]].v(0.5) setpointer tuftRS_gap[i+totaxgj_tuftRS].vgap, cellobj(gjtable_tuftRS.x[i][1]+tuftRS_base).comp[gjtable_tuftRS.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_tuftRS.x[i][1]+tuftRS_base, \ gjtable_tuftRS.x[i][2], \ gjtable_tuftRS.x[i][3]+tuftRS_base, \ gjtable_tuftRS.x[i][4], gapcon_tuftRS) } } ///////////////////////////////////// gjtable_tuft = groucho_gapbld_mix (thisno, num_tuftIB, \ num_tuftRS, totaxgj_tuft, \ table_axgjcompallow_tuftIB, \ num_axgjcompallow_tuftIB, 0) gapcon_tuft = gapcon_tuftIB // NEURON variable only // create (mixed) gap junctions between two cell classes objref tuft_gap[2*totaxgj_tuft+1] // two _gap's per gap junct with fortran indicies, cell types share total number of gj's // note tuft_gap[0] is unused for i=1, totaxgj_tuft { if (serial) { cellobj(gjtable_tuft.x[i][1]+tuftIB_base).comp[gjtable_tuft.x[i][2]] tuft_gap[i] = new gGap(0.5) // tuftIB end cellobj(gjtable_tuft.x[i][3]+tuftRS_base).comp[gjtable_tuft.x[i][4]] tuft_gap[i+totaxgj_tuft] = new gGap(0.5) // tuftRS end tuft_gap[i].g = gapcon_tuft // units? tuft_gap[i+totaxgj_tuft].g = gapcon_tuft setpointer tuft_gap[i].vgap, cellobj(gjtable_tuft.x[i][3]+tuftRS_base).comp[gjtable_tuft.x[i][4]].v(0.5) setpointer tuft_gap[i+totaxgj_tuft].vgap, cellobj(gjtable_tuft.x[i][1]+tuftIB_base).comp[gjtable_tuft.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_tuft.x[i][1]+tuftIB_base, \ gjtable_tuft.x[i][2], \ gjtable_tuft.x[i][3]+tuftRS_base, \ gjtable_tuft.x[i][4], gapcon_tuft) } } ///////////////////////////////////// gjtable_nontuftRS = groucho_gapbld (thisno, num_nontuftRS, \ totaxgj_nontuftRS , \ table_axgjcompallow_nontuftRS , \ num_axgjcompallow_nontuftRS , 0) // create gap junctions in same cell class objref nontuftRS_gap[2*totaxgj_nontuftRS+1] // two _gap's per gap junct with fortran indicies // note nontuftRS_gap[0] is unused for i=1, totaxgj_nontuftRS { if (serial) { cellobj(gjtable_nontuftRS.x[i][1]+nontuftRS_base).comp[gjtable_nontuftRS.x[i][2]] nontuftRS_gap[i] = new gGap(0.5) cellobj(gjtable_nontuftRS.x[i][3]+nontuftRS_base).comp[gjtable_nontuftRS.x[i][4]] nontuftRS_gap[i+totaxgj_nontuftRS] = new gGap(0.5) nontuftRS_gap[i].g = gapcon_nontuftRS // units? nontuftRS_gap[i+totaxgj_nontuftRS].g = gapcon_nontuftRS setpointer nontuftRS_gap[i].vgap, cellobj(gjtable_nontuftRS.x[i][3]+nontuftRS_base).comp[gjtable.x[i][4]].v(0.5) setpointer nontuftRS_gap[i+totaxgj_nontuftRS].vgap, cellobj(gjtable_nontuftRS.x[i][1]+nontuftRS_base).comp[gjtable_nontuftRS.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_nontuftRS.x[i][1]+nontuftRS_base, \ gjtable_nontuftRS.x[i][2], \ gjtable_nontuftRS.x[i][3]+nontuftRS_base, \ gjtable_nontuftRS.x[i][4], gapcon_nontuftRS) } } ///////////////////////////////////// gjtable_supbask = groucho_gapbld (thisno, num_supbask , \ totSDgj_supbask , \ table_SDgjcompallow_supbask , \ num_SDgjcompallow_supbask , 0) // create gap junctions in same cell class objref supbask_gap[2*totSDgj_supbask+1] // two _gap's per gap junct with fortran indicies // note supbask_gap[0] is unused for i=1, totSDgj_supbask { if (serial) { cellobj(gjtable_supbask.x[i][1]+supbask_base).comp[gjtable_supbask.x[i][2]] supbask_gap[i] = new gGap(0.5) cellobj(gjtable_supbask.x[i][3]+supbask_base).comp[gjtable_supbask.x[i][4]] supbask_gap[i+totSDgj_supbask] = new gGap(0.5) supbask_gap[i].g = gapcon_supbask // units? supbask_gap[i+totSDgj_supbask].g = gapcon_supbask setpointer supbask_gap[i].vgap, cellobj(gjtable_supbask.x[i][3]+supbask_base).comp[gjtable.x[i][4]].v(0.5) setpointer supbask_gap[i+totSDgj_supbask].vgap, cellobj(gjtable_supbask.x[i][1]+supbask_base).comp[gjtable_supbask.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_supbask.x[i][1]+supbask_base, \ gjtable_supbask.x[i][2], \ gjtable_supbask.x[i][3]+supbask_base, \ gjtable_supbask.x[i][4], gapcon_supbask) } } ///////////////////////////////////// gjtable_supLTS = groucho_gapbld (thisno, num_supLTS , \ totSDgj_supLTS , \ table_SDgjcompallow_supLTS , \ num_SDgjcompallow_supLTS , 0) // create gap junctions in same cell class objref supLTS_gap[2*totSDgj_supLTS+1] // two _gap's per gap junct with fortran indicies // note supLTS_gap[0] is unused for i=1, totSDgj_supLTS { if (serial) { cellobj(gjtable_supLTS.x[i][1]+supLTS_base).comp[gjtable_supLTS.x[i][2]] supLTS_gap[i] = new gGap(0.5) cellobj(gjtable_supLTS.x[i][3]+supLTS_base).comp[gjtable_supLTS.x[i][4]] supLTS_gap[i+totSDgj_supLTS] = new gGap(0.5) supLTS_gap[i].g = gapcon_supLTS // units? supLTS_gap[i+totSDgj_supLTS].g = gapcon_supLTS setpointer supLTS_gap[i].vgap, cellobj(gjtable_supLTS.x[i][3]+supLTS_base).comp[gjtable.x[i][4]].v(0.5) setpointer supLTS_gap[i+totSDgj_supLTS].vgap, cellobj(gjtable_supLTS.x[i][1]+supLTS_base).comp[gjtable_supLTS.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_supLTS.x[i][1]+supLTS_base, \ gjtable_supLTS.x[i][2], \ gjtable_supLTS.x[i][3]+supLTS_base, \ gjtable_supLTS.x[i][4], gapcon_supLTS) } } ///////////////////////////////////// gjtable_deepbask = groucho_gapbld (thisno, num_deepbask , \ totSDgj_deepbask , \ table_SDgjcompallow_deepbask , \ num_SDgjcompallow_deepbask , 0) // create gap junctions in same cell class objref deepbask_gap[2*totSDgj_deepbask+1] // two _gap's per gap junct with fortran indicies // note deepbask_gap[0] is unused for i=1, totSDgj_deepbask { if (serial) { cellobj(gjtable_deepbask.x[i][1]+deepbask_base).comp[gjtable_deepbask.x[i][2]] deepbask_gap[i] = new gGap(0.5) cellobj(gjtable_deepbask.x[i][3]+deepbask_base).comp[gjtable_deepbask.x[i][4]] deepbask_gap[i+totSDgj_deepbask] = new gGap(0.5) deepbask_gap[i].g = gapcon_deepbask // units? deepbask_gap[i+totSDgj_deepbask].g = gapcon_deepbask setpointer deepbask_gap[i].vgap, cellobj(gjtable_deepbask.x[i][3]+deepbask_base).comp[gjtable.x[i][4]].v(0.5) setpointer deepbask_gap[i+totSDgj_deepbask].vgap, cellobj(gjtable_deepbask.x[i][1]+deepbask_base).comp[gjtable_deepbask.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_deepbask.x[i][1]+deepbask_base, \ gjtable_deepbask.x[i][2], \ gjtable_deepbask.x[i][3]+deepbask_base, \ gjtable_deepbask.x[i][4], gapcon_deepbask) } } ///////////////////////////////////// gjtable_deepLTS = groucho_gapbld (thisno, num_deepLTS , \ totSDgj_deepLTS , \ table_SDgjcompallow_deepLTS , \ num_SDgjcompallow_deepLTS , 0) // create gap junctions in same cell class objref deepLTS_gap[2*totSDgj_deepLTS+1] // two _gap's per gap junct with fortran indicies // note deepLTS_gap[0] is unused for i=1, totSDgj_deepLTS { if (serial) { cellobj(gjtable_deepLTS.x[i][1]+deepLTS_base).comp[gjtable_deepLTS.x[i][2]] deepLTS_gap[i] = new gGap(0.5) cellobj(gjtable_deepLTS.x[i][3]+deepLTS_base).comp[gjtable_deepLTS.x[i][4]] deepLTS_gap[i+totSDgj_deepLTS] = new gGap(0.5) deepLTS_gap[i].g = gapcon_deepLTS // units? deepLTS_gap[i+totSDgj_deepLTS].g = gapcon_deepLTS setpointer deepLTS_gap[i].vgap, cellobj(gjtable_deepLTS.x[i][3]+deepLTS_base).comp[gjtable.x[i][4]].v(0.5) setpointer deepLTS_gap[i+totSDgj_deepLTS].vgap, cellobj(gjtable_deepLTS.x[i][1]+deepLTS_base).comp[gjtable_deepLTS.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_deepLTS.x[i][1]+deepLTS_base, \ gjtable_deepLTS.x[i][2], \ gjtable_deepLTS.x[i][3]+deepLTS_base, \ gjtable_deepLTS.x[i][4], gapcon_deepLTS) } } ///////////////////////////////////// gjtable_TCR = groucho_gapbld (thisno, num_TCR , \ totaxgj_TCR , \ table_axgjcompallow_TCR , \ num_axgjcompallow_TCR , 0) // create gap junctions in same cell class objref TCR_gap[2*totaxgj_TCR+1] // two _gap's per gap junct with fortran indicies // note TCR_gap[0] is unused for i=1, totaxgj_TCR { if (serial) { cellobj(gjtable_TCR.x[i][1]+TCR_base).comp[gjtable_TCR.x[i][2]] TCR_gap[i] = new gGap(0.5) cellobj(gjtable_TCR.x[i][3]+TCR_base).comp[gjtable_TCR.x[i][4]] TCR_gap[i+totaxgj_TCR] = new gGap(0.5) TCR_gap[i].g = gapcon_TCR // units? TCR_gap[i+totaxgj_TCR].g = gapcon_TCR setpointer TCR_gap[i].vgap, cellobj(gjtable_TCR.x[i][3]+TCR_base).comp[gjtable.x[i][4]].v(0.5) setpointer TCR_gap[i+totaxgj_TCR].vgap, cellobj(gjtable_TCR.x[i][1]+TCR_base).comp[gjtable_TCR.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_TCR.x[i][1]+TCR_base, \ gjtable_TCR.x[i][2], \ gjtable_TCR.x[i][3]+TCR_base, \ gjtable_TCR.x[i][4], gapcon_TCR) } } ///////////////////////////////////// gjtable_nRT = groucho_gapbld (thisno, num_nRT , \ totSDgj_nRT , \ table_SDgjcompallow_nRT , \ num_SDgjcompallow_nRT , 0) // create gap junctions in same cell class objref nRT_gap[2*totSDgj_nRT+1] // two _gap's per gap junct with fortran indicies // note nRT_gap[0] is unused for i=1, totSDgj_nRT { if (serial) { cellobj(gjtable_nRT.x[i][1]+nRT_base).comp[gjtable_nRT.x[i][2]] nRT_gap[i] = new gGap(0.5) cellobj(gjtable_nRT.x[i][3]+nRT_base).comp[gjtable_nRT.x[i][4]] nRT_gap[i+totSDgj_nRT] = new gGap(0.5) nRT_gap[i].g = gapcon_nRT // units? nRT_gap[i+totSDgj_nRT].g = gapcon_nRT setpointer nRT_gap[i].vgap, cellobj(gjtable_nRT.x[i][3]+nRT_base).comp[gjtable.x[i][4]].v(0.5) setpointer nRT_gap[i+totSDgj_nRT].vgap, cellobj(gjtable_nRT.x[i][1]+nRT_base).comp[gjtable_nRT.x[i][2]].v(0.5) }else{ par_gap_create(gjtable_nRT.x[i][1]+nRT_base, \ gjtable_nRT.x[i][2], \ gjtable_nRT.x[i][3]+nRT_base, \ gjtable_nRT.x[i][4], gapcon_nRT) } } ///////////////////////////////////// ///////////////////////////////////////////////////////// // // End of construction of gap-junction tables // ///////////////////////////////////////////////////////// ///////////////////////////////////////////////////////// // // Define synapse, current injection strengths // ///////////////////////////////////////////////////////// // Define spread of values for gGABA_nRT_to_TCR ranvec_nRT = durand(seed,num_nRT+1,ranvec_nRT) gGABA_nRT_to_TCR = ranvec_nRT.mul(1.4e-3).add(0.7e-3).c proc gaba_weight_read() { localobj f, s s = new String() sprint(s.s, "../../p2c/other_rnd/%s", $s2) f = new File() f.ropen(s.s) $o1.scanf(f, $o1.size-1) $o1.resize($o1.size+1) $o1.rotate(1,0) if (pmesg) $o1.printf("%g\n") } if (use_p2c_net_connections) { gaba_weight_read(gGABA_nRT_to_TCR, "gGABA_nRT_to_TCR.dat") } // Define tonic currents to different cell types if (pmesg) print "Adding constant random current injections to the somas" if (pmesg) print " of some cell types." ranvec_suppyrRS = durand(seed,num_suppyrRS+1 ,ranvec_suppyrRS ) curr_suppyrRS =ranvec_suppyrRS .mul( 0.05e0).add(-0.025e0).c set_const_curr_inj(suppyrRS_base, num_suppyrRS, curr_suppyrRS) ranvec_suppyrFRB= durand(seed,num_suppyrFRB+1,ranvec_suppyrFRB) curr_suppyrFRB =ranvec_suppyrFRB.mul( 0.1e0).add(0.25e0).c set_const_curr_inj(suppyrFRB_base, num_suppyrFRB, curr_suppyrFRB) ranvec_supbask = durand(seed,num_supbask+1 ,ranvec_supbask ) curr_supbask =ranvec_supbask .mul( 0.02e0).add(0.00e0).c set_const_curr_inj(supbask_base, num_supbask, curr_supbask) ranvec_spinstell= durand(seed,num_spinstell+1,ranvec_spinstell) curr_spinstell =ranvec_spinstell.mul( 0.00e0).add(0.00e0).c set_const_curr_inj(spinstell_base, num_spinstell, curr_spinstell) ranvec_tuftIB = durand(seed,num_tuftIB+1 ,ranvec_tuftIB ) curr_tuftIB =ranvec_tuftIB .mul( 0.1e0).add(awake*1.00e0).c // curr_tuftIB (1,L) = 0.10e0 + 0.1e0 * // curr_tuftIB (1,L) = -1.00e0 + 0.1e0 * // ? suppress intrinsic bursting // curr_tuftIB (1,L) = 1.00e0 + 0.1e0 * // ? wake up cortex ? set_const_curr_inj(tuftIB_base, num_tuftIB, curr_tuftIB) ranvec_tuftRS = durand(seed,num_tuftRS+1 ,ranvec_tuftRS ) curr_tuftRS =ranvec_tuftRS .mul( 0.1e0).add(awake*1.00e0).c // curr_tuftRS (1,L) = 0.10e0 + 0.1e0 * // curr_tuftRS (1,L) = 1.00e0 + 0.1e0 * // ? wake up cortex? set_const_curr_inj(tuftRS_base, num_tuftRS, curr_tuftRS) // choose an postsyn_cell_num for debug print postsyn_cell_num=1 // print *,thisno,": curr_tuftRS(1,",postsyn_cell_num,") = ",curr_tuftRS(1,postsyn_cell_num), // ", ranvec_tuftRS(postsyn_cell_num) = ",ranvec_tuftRS(postsyn_cell_num), // ", curr_suppyrFRB (1,",postsyn_cell_num,") = ", curr_suppyrFRB (1,postsyn_cell_num), // ", ranvec_suppyrFRB(postsyn_cell_num) = ", ranvec_suppyrFRB(postsyn_cell_num) ranvec_nontuftRS = durand(seed,num_nontuftRS+1 ,ranvec_nontuftRS ) curr_nontuftRS =ranvec_nontuftRS .mul( 0.1e0).add(awake*0.75e0).c // curr_nontuftRS (1,postsyn_cell_num) = 0.75e0 + 0.1e0 * // ? wake up cortex set_const_curr_inj(nontuftRS_base, num_nontuftRS, curr_nontuftRS) ranvec_nRT = durand(seed,num_nRT+1 ,ranvec_nRT ) curr_nRT =ranvec_nRT .mul( 0.05e0).add(0.10e0).c set_const_curr_inj(nRT_base, num_nRT, curr_nRT) // During sz, curr to TCR can be zero ranvec_TCR = durand(seed,num_TCR +1 ,ranvec_TCR ) curr_TCR =ranvec_TCR .mul( 0.01e0).add(0.00e0).c // curr_TCR (1,postsyn_cell_num) = 1.40e0 + 0.01e0 * set_const_curr_inj(TCR_base, num_TCR, curr_TCR) if (pmesg) print "Completed adding constant random current injections." seed.x[0] = 137.e0 O = 0 time = 0.e0 // CODE BELOW FOR "PICROTOXIN": scale all GABA-A // GOTO 30 picrotoxin = 1 // 1 for true - this code mimics apparant default of // of FORTRAN code to run with PICROTOXIN code executed if (picrotoxin) { z1 = 0.06e0 // for intracortical IPSCs z2 = 1.00e0 // for intrathalamic IPSCs, usual 1.00 gGABA_supbask_to_suppyrRS *= ( z1 ) gGABA_supbask_to_suppyrFRB *= ( z1 ) gGABA_supbask_to_supbask *= ( z1 ) gGABA_supbask_to_supaxax *= ( z1 ) gGABA_supbask_to_supLTS *= ( z1 ) gGABA_supbask_to_spinstell *= ( z1 ) gGABA_supaxax_to_suppyrRS *= ( z1 ) gGABA_supaxax_to_suppyrFRB *= ( z1 ) gGABA_supaxax_to_spinstell *= ( z1 ) gGABA_supaxax_to_tuftIB *= ( z1 ) gGABA_supaxax_to_tuftRS *= ( z1 ) gGABA_supaxax_to_nontuftRS *= ( z1 ) gGABA_supLTS_to_suppyrRS *= ( z1 ) gGABA_supLTS_to_suppyrFRB *= ( z1 ) gGABA_supLTS_to_supbask *= ( z1 ) gGABA_supLTS_to_supaxax *= ( z1 ) gGABA_supLTS_to_supLTS *= ( z1 ) gGABA_supLTS_to_spinstell *= ( z1 ) gGABA_supLTS_to_tuftIB *= ( z1 ) gGABA_supLTS_to_tuftRS *= ( z1 ) gGABA_supLTS_to_deepbask *= ( z1 ) gGABA_supLTS_to_deepaxax *= ( z1 ) gGABA_supLTS_to_deepLTS *= ( z1 ) gGABA_supLTS_to_nontuftRS *= ( z1 ) gGABA_deepbask_to_spinstell *= ( z1 ) gGABA_deepbask_to_tuftIB *= ( z1 ) gGABA_deepbask_to_tuftRS *= ( z1 ) gGABA_deepbask_to_deepbask *= ( z1 ) gGABA_deepbask_to_deepaxax *= ( z1 ) gGABA_deepbask_to_deepLTS *= ( z1 ) gGABA_deepbask_to_nontuftRS *= ( z1 ) gGABA_deepaxax_to_suppyrRS *= ( z1 ) gGABA_deepaxax_to_suppyrFRB *= ( z1 ) gGABA_deepaxax_to_spinstell *= ( z1 ) gGABA_deepaxax_to_tuftIB *= ( z1 ) gGABA_deepaxax_to_tuftRS *= ( z1 ) gGABA_deepaxax_to_nontuftRS *= ( z1 ) gGABA_deepLTS_to_suppyrRS *= ( z1 ) gGABA_deepLTS_to_suppyrFRB *= ( z1 ) gGABA_deepLTS_to_supbask *= ( z1 ) gGABA_deepLTS_to_supaxax *= ( z1 ) gGABA_deepLTS_to_supLTS *= ( z1 ) gGABA_deepLTS_to_spinstell *= ( z1 ) gGABA_deepLTS_to_tuftIB *= ( z1 ) gGABA_deepLTS_to_tuftRS *= ( z1 ) gGABA_deepLTS_to_deepbask *= ( z1 ) gGABA_deepLTS_to_deepaxax *= ( z1 ) gGABA_deepLTS_to_deepLTS *= ( z1 ) gGABA_deepLTS_to_nontuftRS *= ( z1 ) // for postsyn_cell = 1, num_nRT { // note L is a reserved name in NEURON gGABA_nRT_to_TCR.mul(z2) // } gGABA_nRT_to_nRT = z2 * gGABA_nRT_to_nRT } // end if (picrotoxin) { // 30 CONTINUE // End "PICROTOXIN" code // Code below is "NBQX": scale all AMPA // GOTO 35 NBQX = 1 // this variable mimis FORTRAN code default of executing the // NBQX code if (NBQX) { // z1 = 1.00e0 // intracortical e/i z1 = 1.00e0 // intracortical e/i // usual 1.00 z3 = 1.00e0 // TCR -> cortical i // usual 1.0 \ z4 = 1.00e0 // TCR -> nRT nontuftRS ->nRT // usual 1.00 z2 = 2.00e0 // everything else; note that this may be INCREASED, usual 1.0 gAMPA_suppyrRS_to_suppyrRS= z2 * gAMPA_suppyrRS_to_suppyrRS gAMPA_suppyrRS_to_suppyrFRB= z2 * gAMPA_suppyrRS_to_suppyrFRB gAMPA_suppyrRS_to_supbask = z1 * gAMPA_suppyrRS_to_supbask gAMPA_suppyrRS_to_supaxax = z1 * gAMPA_suppyrRS_to_supaxax gAMPA_suppyrRS_to_supLTS = z1 * gAMPA_suppyrRS_to_supLTS gAMPA_suppyrRS_to_spinstell= z2 * gAMPA_suppyrRS_to_spinstell gAMPA_suppyrRS_to_tuftIB = z2 * gAMPA_suppyrRS_to_tuftIB gAMPA_suppyrRS_to_tuftRS = z2 * gAMPA_suppyrRS_to_tuftRS gAMPA_suppyrRS_to_deepbask = z1 * gAMPA_suppyrRS_to_deepbask gAMPA_suppyrRS_to_deepaxax = z1 * gAMPA_suppyrRS_to_deepaxax gAMPA_suppyrRS_to_deepLTS = z1 * gAMPA_suppyrRS_to_deepLTS gAMPA_suppyrRS_to_nontuftRS= z2 * gAMPA_suppyrRS_to_nontuftRS gAMPA_suppyrFRB_to_suppyrRS= z2 * gAMPA_suppyrFRB_to_suppyrRS gAMPA_suppyrFRB_to_suppyrFRB=z2 * gAMPA_suppyrFRB_to_suppyrFRB gAMPA_suppyrFRB_to_supbask =z1 * gAMPA_suppyrFRB_to_supbask gAMPA_suppyrFRB_to_supaxax =z1 * gAMPA_suppyrFRB_to_supaxax gAMPA_suppyrFRB_to_supLTS =z1 * gAMPA_suppyrFRB_to_supLTS gAMPA_suppyrFRB_to_spinstell=z2 * gAMPA_suppyrFRB_to_spinstell gAMPA_suppyrFRB_to_tuftIB =z2 * gAMPA_suppyrFRB_to_tuftIB gAMPA_suppyrFRB_to_tuftRS =z2 * gAMPA_suppyrFRB_to_tuftRS gAMPA_suppyrFRB_to_deepbask =z1 * gAMPA_suppyrFRB_to_deepbask gAMPA_suppyrFRB_to_deepaxax =z1 * gAMPA_suppyrFRB_to_deepaxax gAMPA_suppyrFRB_to_deepLTS =z1 * gAMPA_suppyrFRB_to_deepLTS gAMPA_suppyrFRB_to_nontuftRS=z2 * gAMPA_suppyrFRB_to_nontuftRS gAMPA_spinstell_to_suppyrRS = z2 * gAMPA_spinstell_to_suppyrRS gAMPA_spinstell_to_suppyrFRB= z2 * gAMPA_spinstell_to_suppyrFRB gAMPA_spinstell_to_supbask = z1 * gAMPA_spinstell_to_supbask gAMPA_spinstell_to_supaxax = z1 * gAMPA_spinstell_to_supaxax gAMPA_spinstell_to_supLTS = z1 * gAMPA_spinstell_to_supLTS gAMPA_spinstell_to_spinstell= z2 * gAMPA_spinstell_to_spinstell gAMPA_spinstell_to_tuftIB = z2 * gAMPA_spinstell_to_tuftIB gAMPA_spinstell_to_tuftRS = z2 * gAMPA_spinstell_to_tuftRS gAMPA_spinstell_to_deepbask = z1 * gAMPA_spinstell_to_deepbask gAMPA_spinstell_to_deepaxax = z1 * gAMPA_spinstell_to_deepaxax gAMPA_spinstell_to_deepLTS = z1 * gAMPA_spinstell_to_deepLTS gAMPA_spinstell_to_nontuftRS= z2 * gAMPA_spinstell_to_nontuftRS gAMPA_tuftIB_to_suppyrRS = z2 * gAMPA_tuftIB_to_suppyrRS gAMPA_tuftIB_to_suppyrFRB = z2 * gAMPA_tuftIB_to_suppyrFRB gAMPA_tuftIB_to_supbask = z1 * gAMPA_tuftIB_to_supbask gAMPA_tuftIB_to_supaxax = z1 * gAMPA_tuftIB_to_supaxax gAMPA_tuftIB_to_supLTS = z1 * gAMPA_tuftIB_to_supLTS gAMPA_tuftIB_to_spinstell = z2 * gAMPA_tuftIB_to_spinstell gAMPA_tuftIB_to_tuftIB = z2 * gAMPA_tuftIB_to_tuftIB gAMPA_tuftIB_to_tuftRS = z2 * gAMPA_tuftIB_to_tuftRS gAMPA_tuftIB_to_deepbask = z1 * gAMPA_tuftIB_to_deepbask gAMPA_tuftIB_to_deepaxax = z1 * gAMPA_tuftIB_to_deepaxax gAMPA_tuftIB_to_deepLTS = z1 * gAMPA_tuftIB_to_deepLTS gAMPA_tuftIB_to_nontuftRS = z2 * gAMPA_tuftIB_to_nontuftRS gAMPA_tuftRS_to_suppyrRS = z2 * gAMPA_tuftRS_to_suppyrRS gAMPA_tuftRS_to_suppyrFRB = z2 * gAMPA_tuftRS_to_suppyrFRB gAMPA_tuftRS_to_supbask = z1 * gAMPA_tuftRS_to_supbask gAMPA_tuftRS_to_supaxax = z1 * gAMPA_tuftRS_to_supaxax gAMPA_tuftRS_to_supLTS = z1 * gAMPA_tuftRS_to_supLTS gAMPA_tuftRS_to_spinstell = z2 * gAMPA_tuftRS_to_spinstell gAMPA_tuftRS_to_tuftIB = z2 * gAMPA_tuftRS_to_tuftIB gAMPA_tuftRS_to_tuftRS = z2 * gAMPA_tuftRS_to_tuftRS gAMPA_tuftRS_to_deepbask = z1 * gAMPA_tuftRS_to_deepbask gAMPA_tuftRS_to_deepaxax = z1 * gAMPA_tuftRS_to_deepaxax gAMPA_tuftRS_to_deepLTS = z1 * gAMPA_tuftRS_to_deepLTS gAMPA_tuftRS_to_nontuftRS = z2 * gAMPA_tuftRS_to_nontuftRS gAMPA_TCR_to_suppyrRS = z2 * gAMPA_TCR_to_suppyrRS gAMPA_TCR_to_suppyrFRB = z2 * gAMPA_TCR_to_suppyrFRB gAMPA_TCR_to_supbask = z3 * gAMPA_TCR_to_supbask gAMPA_TCR_to_supaxax = z3 * gAMPA_TCR_to_supaxax gAMPA_TCR_to_spinstell = z2 * gAMPA_TCR_to_spinstell gAMPA_TCR_to_tuftIB = z2 * gAMPA_TCR_to_tuftIB gAMPA_TCR_to_tuftRS = z2 * gAMPA_TCR_to_tuftRS gAMPA_TCR_to_deepbask = z3 * gAMPA_TCR_to_deepbask gAMPA_TCR_to_deepaxax = z3 * gAMPA_TCR_to_deepaxax gAMPA_TCR_to_nRT = z4 * gAMPA_TCR_to_nRT gAMPA_TCR_to_nontuftRS = z2 * gAMPA_TCR_to_nontuftRS gAMPA_nontuftRS_to_suppyrRS = z2 * gAMPA_nontuftRS_to_suppyrRS gAMPA_nontuftRS_to_suppyrFRB = z2 * gAMPA_nontuftRS_to_suppyrFRB gAMPA_nontuftRS_to_supbask = z1 * gAMPA_nontuftRS_to_supbask gAMPA_nontuftRS_to_supaxax = z1 * gAMPA_nontuftRS_to_supaxax gAMPA_nontuftRS_to_supLTS = z1 * gAMPA_nontuftRS_to_supLTS gAMPA_nontuftRS_to_spinstell = z2 * gAMPA_nontuftRS_to_spinstell gAMPA_nontuftRS_to_tuftIB = z2 * gAMPA_nontuftRS_to_tuftIB gAMPA_nontuftRS_to_tuftRS = z2 * gAMPA_nontuftRS_to_tuftRS gAMPA_nontuftRS_to_deepbask = z1 * gAMPA_nontuftRS_to_deepbask gAMPA_nontuftRS_to_deepaxax = z1 * gAMPA_nontuftRS_to_deepaxax gAMPA_nontuftRS_to_deepLTS = z1 * gAMPA_nontuftRS_to_deepLTS gAMPA_nontuftRS_to_TCR = z2 * gAMPA_nontuftRS_to_TCR gAMPA_nontuftRS_to_nRT = z4 * gAMPA_nontuftRS_to_nRT gAMPA_nontuftRS_to_nontuftRS = z2 * gAMPA_nontuftRS_to_nontuftRS } // end if (NBQX) { // 35 CONTINUE // End "NBQX" section. // Code below scales TCR output to cortex (not to nRT), AMPA NMDA // goto 60 scale_TCR_output = 1 // created to handle default FORTRAN // execution of the code below if (scale_TCR_output) { z = 0.e0 gAMPA_TCR_to_suppyrRS = z * gAMPA_TCR_to_suppyrRS gNMDA_TCR_to_suppyrRS = z * gNMDA_TCR_to_suppyrRS gAMPA_TCR_to_suppyrFRB = z * gAMPA_TCR_to_suppyrFRB gNMDA_TCR_to_suppyrFRB = z * gNMDA_TCR_to_suppyrFRB gAMPA_TCR_to_supbask = z * gAMPA_TCR_to_supbask gNMDA_TCR_to_supbask = z * gNMDA_TCR_to_supbask gAMPA_TCR_to_supaxax = z * gAMPA_TCR_to_supaxax gNMDA_TCR_to_supaxax = z * gNMDA_TCR_to_supaxax gAMPA_TCR_to_spinstell = z * gAMPA_TCR_to_spinstell gNMDA_TCR_to_spinstell = z * gNMDA_TCR_to_spinstell gAMPA_TCR_to_tuftIB = z * gAMPA_TCR_to_tuftIB gNMDA_TCR_to_tuftIB = z * gNMDA_TCR_to_tuftIB gAMPA_TCR_to_tuftRS = z * gAMPA_TCR_to_tuftRS gNMDA_TCR_to_tuftRS = z * gNMDA_TCR_to_tuftRS gAMPA_TCR_to_deepbask = z * gAMPA_TCR_to_deepbask gNMDA_TCR_to_deepbask = z * gNMDA_TCR_to_deepbask gAMPA_TCR_to_deepaxax = z * gAMPA_TCR_to_deepaxax gNMDA_TCR_to_deepaxax = z * gNMDA_TCR_to_deepaxax gAMPA_TCR_to_nontuftRS = z * gAMPA_TCR_to_nontuftRS gNMDA_TCR_to_nontuftRS = z * gNMDA_TCR_to_nontuftRS } // end of if (scale_TCR_output) { // 60 CONTINUE // Code below scales some/all NMDA conductances. // GOTO 40 scale_NMDA_conductances = 1 // mimics default execution of // below FORTRAN code if (scale_NMDA_conductances) { z1 = 0.2e0 // to interneurons // z1 = 0.5e0 // to interneurons // Usual scaling of NMDA to princ. cells, including FRB, is 0.5 z2 = 2.5e0 // to cort. principal cells, except FRB z3 = 2.5e0 // to suppyrFRB z4 = 0.2e0 // to TCR and nRT and from TCR to cort. princ. gNMDA_suppyrRS_to_suppyrRS= z2 * \ gNMDA_suppyrRS_to_suppyrRS gNMDA_suppyrRS_to_suppyrFRB= z3 * \ gNMDA_suppyrRS_to_suppyrFRB gNMDA_suppyrRS_to_supbask = z1 * \ gNMDA_suppyrRS_to_supbask gNMDA_suppyrRS_to_supaxax = z1 * \ gNMDA_suppyrRS_to_supaxax gNMDA_suppyrRS_to_supLTS = z1 * \ gNMDA_suppyrRS_to_supLTS gNMDA_suppyrRS_to_spinstell= z2 * \ gNMDA_suppyrRS_to_spinstell gNMDA_suppyrRS_to_tuftIB = z2 * \ gNMDA_suppyrRS_to_tuftIB gNMDA_suppyrRS_to_tuftRS = z2 * \ gNMDA_suppyrRS_to_tuftRS gNMDA_suppyrRS_to_deepbask = z1 * \ gNMDA_suppyrRS_to_deepbask gNMDA_suppyrRS_to_deepaxax = z1 * \ gNMDA_suppyrRS_to_deepaxax gNMDA_suppyrRS_to_deepLTS = z1 * \ gNMDA_suppyrRS_to_deepLTS gNMDA_suppyrRS_to_nontuftRS= z2 * \ gNMDA_suppyrRS_to_nontuftRS gNMDA_suppyrFRB_to_suppyrRS= z2 * \ gNMDA_suppyrFRB_to_suppyrRS gNMDA_suppyrFRB_to_suppyrFRB= z3 * \ gNMDA_suppyrFRB_to_suppyrFRB gNMDA_suppyrFRB_to_supbask = z1 * \ gNMDA_suppyrFRB_to_supbask gNMDA_suppyrFRB_to_supaxax = z1 * \ gNMDA_suppyrFRB_to_supaxax gNMDA_suppyrFRB_to_supLTS = z1 * \ gNMDA_suppyrFRB_to_supLTS gNMDA_suppyrFRB_to_spinstell= z2 * \ gNMDA_suppyrFRB_to_spinstell gNMDA_suppyrFRB_to_tuftIB = z2 * \ gNMDA_suppyrFRB_to_tuftIB gNMDA_suppyrFRB_to_tuftRS = z2 * \ gNMDA_suppyrFRB_to_tuftRS gNMDA_suppyrFRB_to_deepbask = z1 * \ gNMDA_suppyrFRB_to_deepbask gNMDA_suppyrFRB_to_deepaxax = z1 * \ gNMDA_suppyrFRB_to_deepaxax gNMDA_suppyrFRB_to_deepLTS = z1 * \ gNMDA_suppyrFRB_to_deepLTS gNMDA_suppyrFRB_to_nontuftRS= z2 * \ gNMDA_suppyrFRB_to_nontuftRS gNMDA_spinstell_to_suppyrRS = z2 * \ gNMDA_spinstell_to_suppyrRS gNMDA_spinstell_to_suppyrFRB= z3 * \ gNMDA_spinstell_to_suppyrFRB gNMDA_spinstell_to_supbask = z1 * \ gNMDA_spinstell_to_supbask gNMDA_spinstell_to_supaxax = z1 * \ gNMDA_spinstell_to_supaxax gNMDA_spinstell_to_supLTS = z1 * \ gNMDA_spinstell_to_supLTS gNMDA_spinstell_to_spinstell= z2 * \ gNMDA_spinstell_to_spinstell gNMDA_spinstell_to_tuftIB = z2 * \ gNMDA_spinstell_to_tuftIB gNMDA_spinstell_to_tuftRS = z2 * \ gNMDA_spinstell_to_tuftRS gNMDA_spinstell_to_deepbask = z1 * \ gNMDA_spinstell_to_deepbask gNMDA_spinstell_to_deepaxax = z1 * \ gNMDA_spinstell_to_deepaxax gNMDA_spinstell_to_deepLTS = z1 * \ gNMDA_spinstell_to_deepLTS gNMDA_spinstell_to_nontuftRS= z2 * \ gNMDA_spinstell_to_nontuftRS gNMDA_tuftIB_to_suppyrRS = z2 * \ gNMDA_tuftIB_to_suppyrRS gNMDA_tuftIB_to_suppyrFRB = z3 * \ gNMDA_tuftIB_to_suppyrFRB gNMDA_tuftIB_to_supbask = z1 * \ gNMDA_tuftIB_to_supbask gNMDA_tuftIB_to_supaxax = z1 * \ gNMDA_tuftIB_to_supaxax gNMDA_tuftIB_to_supLTS = z1 * \ gNMDA_tuftIB_to_supLTS gNMDA_tuftIB_to_spinstell = z2 * \ gNMDA_tuftIB_to_spinstell gNMDA_tuftIB_to_tuftIB = z2 * \ gNMDA_tuftIB_to_tuftIB gNMDA_tuftIB_to_tuftRS = z2 * \ gNMDA_tuftIB_to_tuftRS gNMDA_tuftIB_to_deepbask = z1 * \ gNMDA_tuftIB_to_deepbask gNMDA_tuftIB_to_deepaxax = z1 * \ gNMDA_tuftIB_to_deepaxax gNMDA_tuftIB_to_deepLTS = z1 * \ gNMDA_tuftIB_to_deepLTS gNMDA_tuftIB_to_nontuftRS = z2 * \ gNMDA_tuftIB_to_nontuftRS gNMDA_tuftRS_to_suppyrRS = z2 * \ gNMDA_tuftRS_to_suppyrRS gNMDA_tuftRS_to_suppyrFRB = z3 * \ gNMDA_tuftRS_to_suppyrFRB gNMDA_tuftRS_to_supbask = z1 * \ gNMDA_tuftRS_to_supbask gNMDA_tuftRS_to_supaxax = z1 * \ gNMDA_tuftRS_to_supaxax gNMDA_tuftRS_to_supLTS = z1 * \ gNMDA_tuftRS_to_supLTS gNMDA_tuftRS_to_spinstell = z2 * \ gNMDA_tuftRS_to_spinstell gNMDA_tuftRS_to_tuftIB = z2 * \ gNMDA_tuftRS_to_tuftIB gNMDA_tuftRS_to_tuftRS = z2 * \ gNMDA_tuftRS_to_tuftRS gNMDA_tuftRS_to_deepbask = z1 * \ gNMDA_tuftRS_to_deepbask gNMDA_tuftRS_to_deepaxax = z1 * \ gNMDA_tuftRS_to_deepaxax gNMDA_tuftRS_to_deepLTS = z1 * \ gNMDA_tuftRS_to_deepLTS gNMDA_tuftRS_to_nontuftRS = z2 * \ gNMDA_tuftRS_to_nontuftRS gNMDA_TCR_to_suppyrRS = z4 * \ gNMDA_TCR_to_suppyrRS gNMDA_TCR_to_suppyrFRB = z4 * \ gNMDA_TCR_to_suppyrFRB gNMDA_TCR_to_supbask = z1 * \ gNMDA_TCR_to_supbask gNMDA_TCR_to_supaxax = z1 * \ gNMDA_TCR_to_supaxax gNMDA_TCR_to_spinstell = z4 * \ gNMDA_TCR_to_spinstell gNMDA_TCR_to_tuftIB = z4 * \ gNMDA_TCR_to_tuftIB gNMDA_TCR_to_tuftRS = z4 * \ gNMDA_TCR_to_tuftRS gNMDA_TCR_to_deepbask = z1 * \ gNMDA_TCR_to_deepbask gNMDA_TCR_to_deepaxax = z1 * \ gNMDA_TCR_to_deepaxax gNMDA_TCR_to_nRT = z1 * \ gNMDA_TCR_to_nRT gNMDA_TCR_to_nontuftRS = z4 * \ gNMDA_TCR_to_nontuftRS gNMDA_nontuftRS_to_suppyrRS = z2 * \ gNMDA_nontuftRS_to_suppyrRS gNMDA_nontuftRS_to_suppyrFRB = z3 * \ gNMDA_nontuftRS_to_suppyrFRB gNMDA_nontuftRS_to_supbask = z1 * \ gNMDA_nontuftRS_to_supbask gNMDA_nontuftRS_to_supaxax = z1 * \ gNMDA_nontuftRS_to_supaxax gNMDA_nontuftRS_to_supLTS = z1 * \ gNMDA_nontuftRS_to_supLTS gNMDA_nontuftRS_to_spinstell = z2 * \ gNMDA_nontuftRS_to_spinstell gNMDA_nontuftRS_to_tuftIB = z2 * \ gNMDA_nontuftRS_to_tuftIB gNMDA_nontuftRS_to_tuftRS = z2 * \ gNMDA_nontuftRS_to_tuftRS gNMDA_nontuftRS_to_deepbask = z1 * \ gNMDA_nontuftRS_to_deepbask gNMDA_nontuftRS_to_deepaxax = z1 * \ gNMDA_nontuftRS_to_deepaxax gNMDA_nontuftRS_to_deepLTS = z1 * \ gNMDA_nontuftRS_to_deepLTS gNMDA_nontuftRS_to_TCR = z4 * \ gNMDA_nontuftRS_to_TCR gNMDA_nontuftRS_to_nRT = z4 * \ gNMDA_nontuftRS_to_nRT gNMDA_nontuftRS_to_nontuftRS = z2 * \ gNMDA_nontuftRS_to_nontuftRS } // end of scaling of NMDA conductances // 40 CONTINUE // End section scaling all NMDA conductances. // BEGIN guts of main program. // Each node takes care of all the cells of a particular type. // On a node: enumerate the cells of its type; calculate their // synaptic inputs; set applied currents, including those // required by ectopic generation; the numerical integration // subroutine; set up the distal_axon vector. Each node // broadcasts its own distal_axon vector to all the others, and also // receives distal_axon vectors from all the others. // Then, update outtime array and outctr vector. Repeat. // the following three lines were the top of the integration loop // of the FORTRAN program. They are commented out because the // integration takes place later with init() and run(). // The code below this is searched for more conversion to NEURON // especially of remaining details for the chemical and gap-junction // synapses. // 1000 O = O + 1 // time = time + dt // if (time.gt.timtot) goto 2000 // IF (THISNO.EQ.0) THEN // suppyrRS // note: the below implies that the synapses and gap junctions are // updated only every 50 time steps * 0.002 ms /time step = 0.1 ms // IF (MOD(O,how_often).eq.0) then // This loop is being commandeered to setup the synapses (NEURON) // rather than its original purpose which was to setup up the // instantaneous conductances syn_num = num_suppyrRS * num_suppyrRS_to_suppyrRS if (pmesg) print "Total number: syn_num = ",syn_num,"suppyrRS_to_suppyrRS synapses" threshold = 0 // mV threshold for presynaptic cell - triggers a spike // default_delay = 0.05 // .05 ms is the approx. average delay for a spike if the syn conductances // are only updated every 0.1 ms (rough average of 0.1 and 0.002) delay = default_delay // used to start setting values ampa_weight = gAMPA_suppyrRS_to_suppyrRS nmda_weight = gNMDA_suppyrRS_to_suppyrRS objref syn_, postsyncell_, presyncell_ // print "******** The connections to the first cell were printed for debugging" for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num // print "postsyn_cell_num = ", postsyn_cell_num // Handle suppyrRS -> suppyrRS for i = 1, num_suppyrRS_to_suppyrRS { // ith synapse on postsyn_cell_num // if (postsyn_cell_num==1) { // print "connection synapse: ",i,", postsyn cell: ",postsyn_cell_num // } j = map_suppyrRS_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // if (postsyn_cell_num==1) { // print "postsyn comp: ",k,"presyn cell: ",j,", presyn compartment: ", suppyrRS_presyn_comp // } // new method is to create the synapse and then immediately connect with it // If it is desired later to keep track of the synapses in groups of AMPA, NMDA, GABA_A // then additional lists for these synapses seperately can be created and these can be // appended at the same time they are appended to synlist. // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> suppyrRS ampa_weight = gAMPA_suppyrFRB_to_suppyrRS nmda_weight = gNMDA_suppyrFRB_to_suppyrRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_suppyrRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supbask -> suppyrRS gaba_weight = gGABA_supbask_to_suppyrRS for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supbask_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_supbask_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supbask_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supbask_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supbask_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supaxax -> suppyrRS // GABA_A gaba_weight = gGABA_supaxax_to_suppyrRS for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supaxax_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_supaxax_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supaxax_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supaxax_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supaxax_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> suppyrRS // GABA_A gaba_weight = gGABA_supLTS_to_suppyrRS for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_supLTS_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> suppyrRS // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_suppyrRS nmda_weight = gNMDA_spinstell_to_suppyrRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_spinstell_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_suppyrRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> suppyrRS // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_suppyrRS nmda_weight = gNMDA_tuftIB_to_suppyrRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_tuftIB_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_suppyrRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> suppyrRS // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_suppyrRS nmda_weight = gNMDA_tuftRS_to_suppyrRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_tuftRS_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_suppyrRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepaxax -> suppyrRS // GABA_A gaba_weight = gGABA_deepaxax_to_suppyrRS for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepaxax_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_deepaxax_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepaxax_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepaxax_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepaxax_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> suppyrRS // GABA_A gaba_weight = gGABA_deepLTS_to_suppyrRS for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_deepLTS_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> suppyrRS // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_suppyrRS nmda_weight = gNMDA_TCR_to_suppyrRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_TCR_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_suppyrRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // restore default // *********************************************************** // Handle nontuftRS -> suppyrRS // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_suppyrRS nmda_weight = gNMDA_nontuftRS_to_suppyrRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrRS if (gidexist(suppyrRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_suppyrRS { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_suppyrRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_suppyrRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_suppyrRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_suppyrRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // End enumeration of suppyrRS // ENDIF // if (mod(O,how_often).eq.0)... // Define phasic currents to suppyrRS cells, ectopic spikes, // tonic synaptic conductances /* this original fortran code: if (mod(O,200).eq.0) then ranvec_suppyrRS = durand(seed,num_suppyrRS+1 ,ranvec_suppyrRS) for postsyn_cell_num = 1, num_suppyrRS { if ((ranvec_suppyrRS(postsyn_cell_num).gt.0.e0).and. \ (ranvec_suppyrRS(postsyn_cell_num).le.noisepe_suppyrRS)) then curr_suppyrRS(72,postsyn_cell_num) = 0.4e0 ectr_suppyrRS = ectr_suppyrRS + 1 else curr_suppyrRS(72,postsyn_cell_num) = 0.e0 endif } endif provided a change in the current inject into a compartment (72) of the axon of the suppyrRS cells. It flipped randomly back and forth between 0.4e0 (units?) and 0 depending on whether each random number fell between 0 <= random <= noisepe_suppyrRS The FORTRAN random numbers were evenly distributed between 0 and 1. Perhaps the best way to integrate these currents into NEURON is through a mechanism (mod file) that is inserted into these cells compartments. */ // hoc code for above current injections: // synaptic pulse point processes (pulsesyn.mod) are used along with a netstim // to inject ectopic currents into the cells. spacer = 0 // used to start over NetStim's arbitrary y position's weight = 1 // the weight is unused for the PulseSyn delay = 0 // a uniform delay is irrelevant for the NetStim -> PulseSyn // connection since it is poisson process if (pmesg) print "creating ",num_suppyrRS,"NetStim's for suppyrRS cells" netstim_suppyrRS_base = base_ netstim_base_ = 0 if (serial) { } else { netstim_suppyrRS_base = netstim_base_ } for postsyn_cell_num = 1, num_suppyrRS { if (serial) { // add the PulseSyn to the cell postsyncell_ = cellobj(suppyrRS_base+postsyn_cell_num) postsyncell_.comp[72] syn_ = new PulseSyn(0.5) postsyncell_.synlist.append(syn_) syn_.amp=0.4e0 // create and add the NetStim to the artificial cell and connect it to a cell cell_append(new S_NetStim(), 0, increment_spacer(),0) base_ = base_ + 1 // setting the netstim interval (time period) parameter (inverse of poisson process frequency) cellobj(netstim_suppyrRS_base + postsyn_cell_num).pp.interval = 0.4 / noisepe_suppyrRS /* Note: noisepe_suppyrRS = 1/(2.5*10^4) was used to select the 0.4 nA pulse if 0 < rand # (between 0 and 1) < noisepe_suppyrRS What then is the average interpulse interval? If we rolled the dice 2.5*10^4 times with an even distribution between 0 and 1 we would expect to get 1 pulse. How long does it take to roll that many die? The dice are rolled every 0.4 ms so it takes 0.4*2.5*10^4 msec = 10^4 msec = 10 sec (of simulation time) Therefore interval = 0.4 / noisepe_cellname */ // the connecting part nc_append(netstim_suppyrRS_base + postsyn_cell_num, suppyrRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, weight, delay) }else{ par_netstim_create(suppyrRS_base+postsyn_cell_num, 72, 0.4e0, 0.4 / noisepe_suppyrRS) } } delay = default_delay // ELSE IF (THISNO.EQ.1) THEN // suppyrFRB // Handle suppyrRS -> suppyrFRB // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_suppyrFRB nmda_weight = gNMDA_suppyrRS_to_suppyrFRB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_suppyrFRB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> suppyrFRB // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_suppyrFRB nmda_weight = gNMDA_suppyrFRB_to_suppyrFRB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_suppyrFRB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supbask -> suppyrFRB // GABA_A gaba_weight = gGABA_supbask_to_suppyrFRB for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supbask_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_supbask_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supbask_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supbask_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supbask_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supaxax -> suppyrFRB // GABA_A gaba_weight = gGABA_supaxax_to_suppyrFRB for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supaxax_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_supaxax_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supaxax_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supaxax_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supaxax_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> suppyrFRB // GABA_A gaba_weight = gGABA_supLTS_to_suppyrFRB for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_supLTS_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> suppyrFRB // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_suppyrFRB nmda_weight = gNMDA_spinstell_to_suppyrFRB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_spinstell_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_suppyrFRB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> suppyrFRB // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_suppyrFRB nmda_weight = gNMDA_tuftIB_to_suppyrFRB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_tuftIB_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_suppyrFRB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> suppyrFRB // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_suppyrFRB nmda_weight = gNMDA_tuftRS_to_suppyrFRB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_tuftRS_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_suppyrFRB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepaxax -> suppyrFRB // GABA_A gaba_weight = gGABA_deepaxax_to_suppyrFRB for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepaxax_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_deepaxax_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepaxax_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepaxax_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepaxax_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> suppyrFRB // GABA_A gaba_weight = gGABA_deepLTS_to_suppyrFRB for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_deepLTS_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> suppyrFRB // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_suppyrFRB nmda_weight = gNMDA_TCR_to_suppyrFRB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_TCR_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_suppyrFRB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> suppyrFRB // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_suppyrFRB nmda_weight = gNMDA_nontuftRS_to_suppyrFRB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(suppyrFRB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_suppyrFRB { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_suppyrFRB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_suppyrFRB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_suppyrFRB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_suppyrFRB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // End enumeration of suppyrFRB // Define currents to suppyrFRB cells, ectopic spikes, // tonic synaptic conductances /* FORTRAN --- if (mod(O,200).eq.0) then ranvec_suppyrFRB = durand(seed,num_suppyrFRB+1,ranvec_suppyrFRB) for postsyn_cell_num = 1, num_suppyrFRB if (gidexist(netstim_suppyrFRB_base + postsyn_cell_num)) { if ((ranvec_suppyrFRB(postsyn_cell_num).gt.0.e0).and. \ (ranvec_suppyrFRB(postsyn_cell_num).le.noisepe_suppyrFRB)) then curr_suppyrFRB(72,postsyn_cell_num) = 0.4e0 ectr_suppyrFRB = ectr_suppyrFRB + 1 else curr_suppyrFRB(72,postsyn_cell_num) = 0.e0 endif } endif */ // hoc code for poisson process current injections: // synaptic pulse point processes (pulsesyn.mod) are used along with a netstim // to inject ectopic currents into the cells. weight = 1 // the weight is unused for the PulseSyn delay = 0 // delay is irrelevant (not applicable) for the // NetStim -> PulseSyn connection since it is poisson process // (except for the begining of the simulation) if (pmesg) print "creating ",num_suppyrFRB,"NetStim's for suppyrFRB cells" if (serial) { netstim_suppyrFRB_base = base_ } else { netstim_suppyrFRB_base = netstim_base_ } for postsyn_cell_num = 1, num_suppyrFRB { if (serial) { // add the PulseSyn to the cell postsyncell_ = cellobj(suppyrFRB_base+postsyn_cell_num) postsyncell_.comp[72] syn_ = new PulseSyn(0.5) postsyncell_.synlist.append(syn_) syn_.amp=0.4e0 // create and add the NetStim to the artificial cell and connect it to a cell cell_append(new S_NetStim(), 0, increment_spacer(),0) base_ = base_ + 1 // setting the netstim interval (time period) parameter (inverse of poisson process frequency) cellobj(netstim_suppyrFRB_base + postsyn_cell_num).pp.interval = 0.4 / noisepe_suppyrFRB // the connecting part nc_append(netstim_suppyrFRB_base + postsyn_cell_num, suppyrFRB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, weight, delay) }else{ par_netstim_create(suppyrFRB_base+postsyn_cell_num, 72, 0.4e0, 0.4 / noisepe_suppyrFRB) } } delay = default_delay // ELSE IF (THISNO.EQ.2) THEN // supbask // Handle suppyrRS -> supbask // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_supbask nmda_weight = gNMDA_suppyrRS_to_supbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_supbask { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_supbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> supbask // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_supbask nmda_weight = gNMDA_suppyrFRB_to_supbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_supbask { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_supbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supbask -> supbask // GABA_A gaba_weight = gGABA_supbask_to_supbask for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supbask_to_supbask { // ith synapse on postsyn_cell_num j = map_supbask_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supbask_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supbask_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supbask_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> supbask // GABA_A gaba_weight = gGABA_supLTS_to_supbask for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_supbask { // ith synapse on postsyn_cell_num j = map_supLTS_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> supbask // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_supbask nmda_weight = gNMDA_spinstell_to_supbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_supbask { // ith synapse on postsyn_cell_num j = map_spinstell_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_supbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> supbask // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_supbask nmda_weight = gNMDA_tuftIB_to_supbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_supbask { // ith synapse on postsyn_cell_num j = map_tuftIB_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_supbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> supbask // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_supbask nmda_weight = gNMDA_tuftRS_to_supbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_supbask { // ith synapse on postsyn_cell_num j = map_tuftRS_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_supbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepLTS?! -> supbask // GABA_A gaba_weight = gGABA_deepLTS_to_supbask for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_supbask { // ith synapse on postsyn_cell_num j = map_deepLTS_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> supbask // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_supbask nmda_weight = gNMDA_TCR_to_supbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_supbask { // ith synapse on postsyn_cell_num j = map_TCR_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_supbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> supbask // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_supbask nmda_weight = gNMDA_nontuftRS_to_supbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supbask if (gidexist(supbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_supbask { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_supbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_supbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_supbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_supbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, supbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // ELSE IF (THISNO.EQ.3) THEN // supaxax // Handle suppyrRS -> supaxax // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_supaxax nmda_weight = gNMDA_suppyrRS_to_supaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_supaxax { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_supaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> supaxax // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_supaxax nmda_weight = gNMDA_suppyrFRB_to_supaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_supaxax { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_supaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supbask -> supaxax // GABA_A gaba_weight = gGABA_supbask_to_supaxax for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supbask_to_supaxax { // ith synapse on postsyn_cell_num j = map_supbask_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supbask_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supbask_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supbask_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> supaxax // GABA_A gaba_weight = gGABA_supLTS_to_supaxax for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_supaxax { // ith synapse on postsyn_cell_num j = map_supLTS_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> supaxax // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_supaxax nmda_weight = gNMDA_spinstell_to_supaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_supaxax { // ith synapse on postsyn_cell_num j = map_spinstell_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_supaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> supaxax // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_supaxax nmda_weight = gNMDA_tuftIB_to_supaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_supaxax { // ith synapse on postsyn_cell_num j = map_tuftIB_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_supaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> supaxax // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_supaxax nmda_weight = gNMDA_tuftRS_to_supaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_supaxax { // ith synapse on postsyn_cell_num j = map_tuftRS_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_supaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepLTS -> supaxax // GABA_A gaba_weight = gGABA_deepLTS_to_supaxax for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_supaxax { // ith synapse on postsyn_cell_num j = map_deepLTS_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> supaxax // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_supaxax nmda_weight = gNMDA_TCR_to_supaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_supaxax { // ith synapse on postsyn_cell_num j = map_TCR_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_supaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> supaxax // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_supaxax nmda_weight = gNMDA_nontuftRS_to_supaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supaxax if (gidexist(supaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_supaxax { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_supaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_supaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_supaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_supaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, supaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // ELSE IF (THISNO.EQ.4) THEN // supLTS // Handle suppyrRS -> supLTS // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_supLTS nmda_weight = gNMDA_suppyrRS_to_supLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_supLTS { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_supLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> supLTS // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_supLTS nmda_weight = gNMDA_suppyrFRB_to_supLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_supLTS { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_supLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supbask -> supLTS // GABA_A gaba_weight = gGABA_supbask_to_supLTS for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supbask_to_supLTS { // ith synapse on postsyn_cell_num j = map_supbask_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supbask_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supbask_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supbask_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> supLTS // GABA_A gaba_weight = gGABA_supLTS_to_supLTS for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_supLTS { // ith synapse on postsyn_cell_num j = map_supLTS_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> supLTS // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_supLTS nmda_weight = gNMDA_spinstell_to_supLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_supLTS { // ith synapse on postsyn_cell_num j = map_spinstell_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_supLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> supLTS // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_supLTS nmda_weight = gNMDA_tuftIB_to_supLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_supLTS { // ith synapse on postsyn_cell_num j = map_tuftIB_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_supLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> supLTS // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_supLTS nmda_weight = gNMDA_tuftRS_to_supLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_supLTS { // ith synapse on postsyn_cell_num j = map_tuftRS_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_supLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepLTS -> supLTS // GABA_A gaba_weight = gGABA_deepLTS_to_supLTS for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_supLTS { // ith synapse on postsyn_cell_num j = map_deepLTS_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle nontuftRS -> supLTS // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_supLTS nmda_weight = gNMDA_nontuftRS_to_supLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_supLTS if (gidexist(supLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_supLTS { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_supLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_supLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(supLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_supLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_supLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, supLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // ELSE IF (THISNO.EQ.5) THEN // spinstell // Handle suppyrRS -> spinstell // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_spinstell nmda_weight = gNMDA_suppyrRS_to_spinstell // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_spinstell { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_spinstell // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> spinstell // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_spinstell nmda_weight = gNMDA_suppyrFRB_to_spinstell // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_spinstell { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_spinstell // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supbask?! -> spinstell // GABA_A gaba_weight = gGABA_supbask_to_spinstell for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supbask_to_spinstell { // ith synapse on postsyn_cell_num j = map_supbask_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supbask_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supbask_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supbask_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supaxax -> spinstell // GABA_A gaba_weight = gGABA_supaxax_to_spinstell for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supaxax_to_spinstell { // ith synapse on postsyn_cell_num j = map_supaxax_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supaxax_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supaxax_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supaxax_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> spinstell // GABA_A gaba_weight = gGABA_supLTS_to_spinstell for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_spinstell { // ith synapse on postsyn_cell_num j = map_supLTS_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> spinstell // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_spinstell nmda_weight = gNMDA_spinstell_to_spinstell // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_spinstell { // ith synapse on postsyn_cell_num j = map_spinstell_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_spinstell // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> spinstell // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_spinstell nmda_weight = gNMDA_tuftIB_to_spinstell // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_spinstell { // ith synapse on postsyn_cell_num j = map_tuftIB_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_spinstell // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> spinstell // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_spinstell nmda_weight = gNMDA_tuftRS_to_spinstell // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_spinstell { // ith synapse on postsyn_cell_num j = map_tuftRS_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_spinstell // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepbask -> spinstell // GABA_A gaba_weight = gGABA_deepbask_to_spinstell for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepbask_to_spinstell { // ith synapse on postsyn_cell_num j = map_deepbask_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepbask_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepbask_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepbask_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepaxax -> spinstell // GABA_A gaba_weight = gGABA_deepaxax_to_spinstell for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepaxax_to_spinstell { // ith synapse on postsyn_cell_num j = map_deepaxax_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepaxax_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepaxax_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepaxax_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> spinstell // GABA_A gaba_weight = gGABA_deepLTS_to_spinstell for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_spinstell { // ith synapse on postsyn_cell_num j = map_deepLTS_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> spinstell // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_spinstell nmda_weight = gNMDA_TCR_to_spinstell // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_spinstell { // ith synapse on postsyn_cell_num j = map_TCR_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_spinstell // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> spinstell // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_spinstell nmda_weight = gNMDA_nontuftRS_to_spinstell // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_spinstell if (gidexist(spinstell_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_spinstell { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_spinstell.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_spinstell.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(spinstell_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_spinstell // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_spinstell // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, spinstell_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // ELSE IF (THISNO.EQ.11+10*debug) THEN // tuftIB // Handle suppyrRS -> tuftIB // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_tuftIB nmda_weight = gNMDA_suppyrRS_to_tuftIB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_tuftIB { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_tuftIB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> tuftIB // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_tuftIB nmda_weight = gNMDA_suppyrFRB_to_tuftIB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_tuftIB { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_tuftIB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supaxax -> tuftIB // GABA_A gaba_weight = gGABA_supaxax_to_tuftIB for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supaxax_to_tuftIB { // ith synapse on postsyn_cell_num j = map_supaxax_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supaxax_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supaxax_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supaxax_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS?! -> tuftIB! // GABA_A gaba_weight = gGABA_supLTS_to_tuftIB for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_tuftIB { // ith synapse on postsyn_cell_num j = map_supLTS_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> tuftIB // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_tuftIB nmda_weight = gNMDA_spinstell_to_tuftIB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_tuftIB { // ith synapse on postsyn_cell_num j = map_spinstell_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_tuftIB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> tuftIB // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_tuftIB nmda_weight = gNMDA_tuftIB_to_tuftIB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_tuftIB { // ith synapse on postsyn_cell_num j = map_tuftIB_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_tuftIB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> tuftIB // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_tuftIB nmda_weight = gNMDA_tuftRS_to_tuftIB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_tuftIB { // ith synapse on postsyn_cell_num j = map_tuftRS_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_tuftIB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepbask -> tuftIB // GABA_A gaba_weight = gGABA_deepbask_to_tuftIB for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepbask_to_tuftIB { // ith synapse on postsyn_cell_num j = map_deepbask_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepbask_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepbask_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepbask_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepaxax -> tuftIB // GABA_A gaba_weight = gGABA_deepaxax_to_tuftIB for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepaxax_to_tuftIB { // ith synapse on postsyn_cell_num j = map_deepaxax_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepaxax_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepaxax_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepaxax_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> tuftIB // GABA_A gaba_weight = gGABA_deepLTS_to_tuftIB for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_tuftIB { // ith synapse on postsyn_cell_num j = map_deepLTS_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> tuftIB // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_tuftIB nmda_weight = gNMDA_TCR_to_tuftIB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_tuftIB { // ith synapse on postsyn_cell_num j = map_TCR_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_tuftIB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> tuftIB // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_tuftIB nmda_weight = gNMDA_nontuftRS_to_tuftIB // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftIB if (gidexist(tuftIB_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_tuftIB { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_tuftIB.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_tuftIB.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_tuftIB // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_tuftIB // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** /* // Define currents to tuftIB cells, ectopic spikes, // tonic synaptic conductances if (mod(O,200).eq.0) then ranvec_tuftIB = durand(seed,num_tuftIB+1 ,ranvec_tuftIB ) for postsyn_cell_num = 1, num_tuftIB if (gidexist(netstim_tuftIB_base + postsyn_cell_num)) { if ((ranvec_tuftIB (postsyn_cell_num).gt.0.e0).and. \ (ranvec_tuftIB (postsyn_cell_num).le.noisepe_tuftIB )) then curr_tuftIB (60,postsyn_cell_num) = 0.4e0 ectr_tuftIB = ectr_tuftIB + 1 else curr_tuftIB (60,postsyn_cell_num) = 0.e0 endif } endif */ // hoc code for poisson process current injections: // synaptic pulse point processes (pulsesyn.mod) are used along with a netstim // to inject ectopic currents into the cells. weight = 1 // the weight is unused for the PulseSyn delay = 0 // delay is irrelevant (not applicable) for the // NetStim -> PulseSyn connection since it is poisson process // (except for the begining of the simulation) if (pmesg) print "creating ",num_tuftIB,"NetStim's for tuftIB cells" if (serial) { netstim_tuftIB_base = base_ } else { netstim_tuftIB_base = netstim_base_ } for postsyn_cell_num = 1, num_tuftIB { if (serial) { // add the PulseSyn to the cell postsyncell_ = cellobj(tuftIB_base+postsyn_cell_num) postsyncell_.comp[60] syn_ = new PulseSyn(0.5) postsyncell_.synlist.append(syn_) syn_.amp=0.4e0 // create and add the NetStim to the artificial cell and connect it to a cell cell_append(new S_NetStim(), 0, increment_spacer(),0) base_ = base_ + 1 // setting the netstim interval (time period) parameter (inverse of poisson process frequency) cellobj(netstim_tuftIB_base + postsyn_cell_num).pp.interval = 0.4 / noisepe_tuftIB // the connecting part nc_append(netstim_tuftIB_base + postsyn_cell_num, tuftIB_base + postsyn_cell_num, postsyncell_.synlist.count()-1, weight, delay) }else{ par_netstim_create(tuftIB_base+postsyn_cell_num, 60, 0.4e0, 0.4 / noisepe_tuftIB) } } delay = default_delay // ELSE IF (THISNO.EQ.6+10*debug) THEN // tuftRS // Handle suppyrRS -> tuftRS // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_tuftRS nmda_weight = gNMDA_suppyrRS_to_tuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_tuftRS { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_tuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> tuftRS // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_tuftRS nmda_weight = gNMDA_suppyrFRB_to_tuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_tuftRS { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_tuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supaxax -> tuftRS // GABA_A gaba_weight = gGABA_supaxax_to_tuftRS for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supaxax_to_tuftRS { // ith synapse on postsyn_cell_num j = map_supaxax_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supaxax_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supaxax_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supaxax_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> tuftRS // GABA_A gaba_weight = gGABA_supLTS_to_tuftRS for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_tuftRS { // ith synapse on postsyn_cell_num j = map_supLTS_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> tuftRS // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_tuftRS nmda_weight = gNMDA_spinstell_to_tuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_tuftRS { // ith synapse on postsyn_cell_num j = map_spinstell_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_tuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> tuftRS // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_tuftRS nmda_weight = gNMDA_tuftIB_to_tuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_tuftRS { // ith synapse on postsyn_cell_num j = map_tuftIB_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_tuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> tuftRS // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_tuftRS nmda_weight = gNMDA_tuftRS_to_tuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_tuftRS { // ith synapse on postsyn_cell_num j = map_tuftRS_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_tuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepbask -> tuftRS // GABA_A gaba_weight = gGABA_deepbask_to_tuftRS for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepbask_to_tuftRS { // ith synapse on postsyn_cell_num j = map_deepbask_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepbask_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepbask_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepbask_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepaxax -> tuftRS // GABA_A gaba_weight = gGABA_deepaxax_to_tuftRS for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepaxax_to_tuftRS { // ith synapse on postsyn_cell_num j = map_deepaxax_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepaxax_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepaxax_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepaxax_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> tuftRS // GABA_A gaba_weight = gGABA_deepLTS_to_tuftRS for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_tuftRS { // ith synapse on postsyn_cell_num j = map_deepLTS_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> tuftRS // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_tuftRS nmda_weight = gNMDA_TCR_to_tuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_tuftRS { // ith synapse on postsyn_cell_num j = map_TCR_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_tuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> tuftRS // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_tuftRS nmda_weight = gNMDA_nontuftRS_to_tuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_tuftRS if (gidexist(tuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_tuftRS { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_tuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_tuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_tuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_tuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** /* // Define currents to tuftRS cells, ectopic spikes, // tonic synaptic conductances if (mod(O,200).eq.0) then ranvec_tuftRS = durand(seed,num_tuftRS+1 ,ranvec_tuftRS ) for postsyn_cell_num = 1, num_tuftRS if (gidexist(netstim_tuftRS_base + postsyn_cell_num)) { if ((ranvec_tuftRS (postsyn_cell_num).gt.0.e0).and. \ (ranvec_tuftRS (postsyn_cell_num).le.noisepe_tuftRS )) then curr_tuftRS (60,postsyn_cell_num) = 0.4e0 ectr_tuftRS = ectr_tuftRS + 1 else curr_tuftRS (60,postsyn_cell_num) = 0.e0 endif } endif */ // hoc code for poisson process current injections: // synaptic pulse point processes (pulsesyn.mod) are used along with a netstim // to inject ectopic currents into the cells. weight = 1 // the weight is unused for the PulseSyn delay = 0 // delay is irrelevant (not applicable) for the // NetStim -> PulseSyn connection since it is poisson process // (except for the begining of the simulation) if (pmesg) print "creating ",num_tuftRS,"NetStim's for tuftRS cells" if (serial) { netstim_tuftRS_base = base_ } else { netstim_tuftRS_base = netstim_base_ } for postsyn_cell_num = 1, num_tuftRS { if (serial) { // add the PulseSyn to the cell postsyncell_ = cellobj(tuftRS_base+postsyn_cell_num) postsyncell_.comp[60] syn_ = new PulseSyn(0.5) postsyncell_.synlist.append(syn_) syn_.amp=0.4e0 // create and add the NetStim to the artificial cell and connect it to a cell cell_append(new S_NetStim(), 0, increment_spacer(),0) base_ = base_ + 1 // setting the netstim interval (time period) parameter (inverse of poisson process frequency) cellobj(netstim_tuftRS_base + postsyn_cell_num).pp.interval = 0.4 / noisepe_tuftRS // the connecting part nc_append(netstim_tuftRS_base + postsyn_cell_num, tuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, weight, delay) }else{ par_netstim_create(tuftRS_base+postsyn_cell_num, 60, 0.4e0, 0.4 / noisepe_tuftRS) } } delay = default_delay // ELSE IF (THISNO.EQ.8+10*debug) THEN // nontuftRS // Handle suppyrRS -> nontuftRS // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_nontuftRS nmda_weight = gNMDA_suppyrRS_to_nontuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_nontuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> nontuftRS // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_nontuftRS nmda_weight = gNMDA_suppyrFRB_to_nontuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_nontuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supaxax -> nontuftRS // GABA_A gaba_weight = gGABA_supaxax_to_nontuftRS for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supaxax_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_supaxax_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supaxax_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supaxax_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supaxax_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle supLTS -> nontuftRS // GABA_A gaba_weight = gGABA_supLTS_to_nontuftRS for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_supLTS_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> nontuftRS // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_nontuftRS nmda_weight = gNMDA_spinstell_to_nontuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_spinstell_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_nontuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> nontuftRS // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_nontuftRS nmda_weight = gNMDA_tuftIB_to_nontuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_tuftIB_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_nontuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> nontuftRS // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_nontuftRS nmda_weight = gNMDA_tuftRS_to_nontuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_tuftRS_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_nontuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepbask -> nontuftRS // GABA_A gaba_weight = gGABA_deepbask_to_nontuftRS for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepbask_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_deepbask_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepbask_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepbask_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepbask_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepaxax -> nontuftRS // GABA_A gaba_weight = gGABA_deepaxax_to_nontuftRS for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepaxax_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_deepaxax_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepaxax_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepaxax_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepaxax_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> nontuftRS // GABA_A gaba_weight = gGABA_deepLTS_to_nontuftRS for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_deepLTS_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> nontuftRS // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_nontuftRS nmda_weight = gNMDA_TCR_to_nontuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_TCR_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_nontuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> nontuftRS // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_nontuftRS nmda_weight = gNMDA_nontuftRS_to_nontuftRS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nontuftRS if (gidexist(nontuftRS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_nontuftRS { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_nontuftRS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_nontuftRS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_nontuftRS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_nontuftRS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** /* // Define currents to nontuftRS cells, ectopic spikes, // tonic synaptic conductances if (mod(O,200).eq.0) then ranvec_nontuftRS = durand(seed,num_nontuftRS+1 ,ranvec_nontuftRS ) for postsyn_cell_num = 1, num_nontuftRS if (gidexist(netstim_nontuftRS_base + postsyn_cell_num)) { if ((ranvec_nontuftRS (postsyn_cell_num).gt.0.e0).and. \ (ranvec_nontuftRS (postsyn_cell_num).le.noisepe_nontuftRS )) then curr_nontuftRS (48,postsyn_cell_num) = 0.4e0 ectr_nontuftRS = ectr_nontuftRS + 1 else curr_nontuftRS (48,postsyn_cell_num) = 0.e0 endif } endif */ // hoc code for poisson process current injections: // synaptic pulse point processes (pulsesyn.mod) are used along with a netstim // to inject ectopic currents into the cells. weight = 1 // the weight is unused for the PulseSyn delay = 0 // delay is irrelevant (not applicable) for the // NetStim -> PulseSyn connection since it is poisson process // (except for the begining of the simulation) if (pmesg) print "creating ",num_nontuftRS,"NetStim's for nontuftRS cells" if (serial) { netstim_nontuftRS_base = base_ } else { netstim_nontuftRS_base = netstim_base_ } for postsyn_cell_num = 1, num_nontuftRS { if (serial) { // add the PulseSyn to the cell postsyncell_ = cellobj(nontuftRS_base+postsyn_cell_num) postsyncell_.comp[48] syn_ = new PulseSyn(0.5) postsyncell_.synlist.append(syn_) syn_.amp=0.4e0 // create and add the NetStim to the artificial cell and connect it to a cell cell_append(new S_NetStim(), 0, increment_spacer(),0) base_ = base_ + 1 // setting the netstim interval (time period) parameter (inverse of poisson process frequency) cellobj(netstim_nontuftRS_base + postsyn_cell_num).pp.interval = 0.4 / noisepe_nontuftRS // the connecting part nc_append(netstim_nontuftRS_base + postsyn_cell_num, nontuftRS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, weight, delay) }else{ par_netstim_create(nontuftRS_base+postsyn_cell_num, 48, 0.4e0, 0.4 / noisepe_nontuftRS) } } delay = default_delay // ELSE IF (THISNO.EQ.9-3*debug) THEN // deepbask // Handle suppyrRS -> deepbask // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_deepbask nmda_weight = gNMDA_suppyrRS_to_deepbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_deepbask { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_deepbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> deepbask // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_deepbask nmda_weight = gNMDA_suppyrFRB_to_deepbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_deepbask { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_deepbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supLTS -> deepbask // GABA_A gaba_weight = gGABA_supLTS_to_deepbask for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_deepbask { // ith synapse on postsyn_cell_num j = map_supLTS_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> deepbask // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_deepbask nmda_weight = gNMDA_spinstell_to_deepbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_deepbask { // ith synapse on postsyn_cell_num j = map_spinstell_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_deepbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> deepbask // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_deepbask nmda_weight = gNMDA_tuftIB_to_deepbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_deepbask { // ith synapse on postsyn_cell_num j = map_tuftIB_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_deepbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> deepbask // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_deepbask nmda_weight = gNMDA_tuftRS_to_deepbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_deepbask { // ith synapse on postsyn_cell_num j = map_tuftRS_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_deepbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepbask -> deepbask // GABA_A gaba_weight = gGABA_deepbask_to_deepbask for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepbask_to_deepbask { // ith synapse on postsyn_cell_num j = map_deepbask_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepbask_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepbask_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepbask_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> deepbask // GABA_A gaba_weight = gGABA_deepLTS_to_deepbask for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_deepbask { // ith synapse on postsyn_cell_num j = map_deepLTS_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> deepbask // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_deepbask nmda_weight = gNMDA_TCR_to_deepbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_deepbask { // ith synapse on postsyn_cell_num j = map_TCR_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_deepbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> deepbask // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_deepbask nmda_weight = gNMDA_nontuftRS_to_deepbask // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepbask if (gidexist(deepbask_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_deepbask { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_deepbask.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_deepbask.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepbask_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_deepbask // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_deepbask // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, deepbask_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // ELSE IF (THISNO.EQ.10-3*debug) THEN // deepaxax // Handle suppyrRS -> deepaxax // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_deepaxax nmda_weight = gNMDA_suppyrRS_to_deepaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_deepaxax { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_deepaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> deepaxax // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_deepaxax nmda_weight = gNMDA_suppyrFRB_to_deepaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_deepaxax { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_deepaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supLTS -> deepaxax // GABA_A gaba_weight = gGABA_supLTS_to_deepaxax for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_deepaxax { // ith synapse on postsyn_cell_num j = map_supLTS_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> deepaxax // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_deepaxax nmda_weight = gNMDA_spinstell_to_deepaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_deepaxax { // ith synapse on postsyn_cell_num j = map_spinstell_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_deepaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> deepaxax // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_deepaxax nmda_weight = gNMDA_tuftIB_to_deepaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_deepaxax { // ith synapse on postsyn_cell_num j = map_tuftIB_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_deepaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> deepaxax // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_deepaxax nmda_weight = gNMDA_tuftRS_to_deepaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_deepaxax { // ith synapse on postsyn_cell_num j = map_tuftRS_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_deepaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepbask -> deepaxax // GABA_A gaba_weight = gGABA_deepbask_to_deepaxax for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepbask_to_deepaxax { // ith synapse on postsyn_cell_num j = map_deepbask_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepbask_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepbask_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepbask_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> deepaxax // GABA_A gaba_weight = gGABA_deepLTS_to_deepaxax for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_deepaxax { // ith synapse on postsyn_cell_num j = map_deepLTS_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle TCR -> deepaxax // AMPA and NMDA delay = thal_cort_delay ampa_weight = gAMPA_TCR_to_deepaxax nmda_weight = gNMDA_TCR_to_deepaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_deepaxax { // ith synapse on postsyn_cell_num j = map_TCR_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_deepaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Handle nontuftRS -> deepaxax // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_deepaxax nmda_weight = gNMDA_nontuftRS_to_deepaxax // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepaxax if (gidexist(deepaxax_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_deepaxax { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_deepaxax.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_deepaxax.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepaxax_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_deepaxax // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_deepaxax // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, deepaxax_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // ELSE IF (THISNO.EQ.7-3*debug) THEN // deepLTS // Handle suppyrRS -> deepLTS // AMPA and NMDA ampa_weight = gAMPA_suppyrRS_to_deepLTS nmda_weight = gNMDA_suppyrRS_to_deepLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrRS_to_deepLTS { // ith synapse on postsyn_cell_num j = map_suppyrRS_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrRS_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrRS_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrRS_to_deepLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrRS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle suppyrFRB -> deepLTS // AMPA and NMDA ampa_weight = gAMPA_suppyrFRB_to_deepLTS nmda_weight = gNMDA_suppyrFRB_to_deepLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_suppyrFRB_to_deepLTS { // ith synapse on postsyn_cell_num j = map_suppyrFRB_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_suppyrFRB_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_suppyrFRB_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_suppyrFRB_to_deepLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(suppyrFRB_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle supLTS -> deepLTS // GABA_A gaba_weight = gGABA_supLTS_to_deepLTS for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_supLTS_to_deepLTS { // ith synapse on postsyn_cell_num j = map_supLTS_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_supLTS_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_supLTS_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(supLTS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle spinstell -> deepLTS // AMPA and NMDA ampa_weight = gAMPA_spinstell_to_deepLTS nmda_weight = gNMDA_spinstell_to_deepLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_spinstell_to_deepLTS { // ith synapse on postsyn_cell_num j = map_spinstell_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_spinstell_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_spinstell_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_spinstell_to_deepLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(spinstell_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftIB -> deepLTS // AMPA and NMDA ampa_weight = gAMPA_tuftIB_to_deepLTS nmda_weight = gNMDA_tuftIB_to_deepLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftIB_to_deepLTS { // ith synapse on postsyn_cell_num j = map_tuftIB_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftIB_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftIB_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftIB_to_deepLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftIB_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle tuftRS -> deepLTS // AMPA and NMDA ampa_weight = gAMPA_tuftRS_to_deepLTS nmda_weight = gNMDA_tuftRS_to_deepLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_tuftRS_to_deepLTS { // ith synapse on postsyn_cell_num j = map_tuftRS_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_tuftRS_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_tuftRS_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_tuftRS_to_deepLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(tuftRS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle deepbask -> deepLTS // GABA_A gaba_weight = gGABA_deepbask_to_deepLTS for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepbask_to_deepLTS { // ith synapse on postsyn_cell_num j = map_deepbask_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepbask_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepbask_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepbask_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle deepLTS -> deepLTS // GABA_A gaba_weight = gGABA_deepLTS_to_deepLTS for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_deepLTS_to_deepLTS { // ith synapse on postsyn_cell_num j = map_deepLTS_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_deepLTS_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA_deepLTS_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(deepLTS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, gaba_weight, delay) } } // *********************************************************** // Handle nontuftRS -> deepLTS // AMPA and NMDA ampa_weight = gAMPA_nontuftRS_to_deepLTS nmda_weight = gNMDA_nontuftRS_to_deepLTS // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_deepLTS if (gidexist(deepLTS_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_deepLTS { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_deepLTS.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_deepLTS.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(deepLTS_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_deepLTS // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_deepLTS // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, deepLTS_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // ELSE IF (THISNO.EQ.12+10*debug) THEN // TCR // Handle nRT -> TCR // GABA_A objref syn2_ // for a second time constant gaba_a synapse for postsyn_cell_num = 1, num_TCR if (gidexist(TCR_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nRT_to_TCR { // ith synapse on postsyn_cell_num // random values of conductance in this special case j = map_nRT_to_TCR.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num gaba_weight = gGABA_nRT_to_TCR.x[j] k = com_nRT_to_TCR.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place **TWO** GABA_A synapses in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(TCR_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA1_nRT_to_TCR // these synapses have gaba_a with two time constants if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn2_ = new GABAA(0.5) postsyncell_.synlist.append(syn2_) syn2_.tau = tauGABA2_nRT_to_TCR // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nRT_base + j, TCR_base + postsyn_cell_num, postsyncell_.synlist.count()-2, 0.625*gaba_weight, delay) nc_append(nRT_base + j, TCR_base + postsyn_cell_num, postsyncell_.synlist.count()-1, 0.375*gaba_weight, delay) } } // *********************************************************** // Handle nontuftRS -> TCR // AMPA and NMDA delay = cort_thal_delay ampa_weight = gAMPA_nontuftRS_to_TCR nmda_weight = gNMDA_nontuftRS_to_TCR // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_TCR if (gidexist(TCR_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_TCR { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_TCR.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_TCR.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(TCR_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_TCR // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, TCR_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_TCR // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, TCR_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** /* // Define currents to TCR cells, ectopic spikes, // tonic synaptic conductances if (mod(O,200).eq.0) then ranvec_TCR = durand(seed,num_TCR+1 ,ranvec_TCR ) for postsyn_cell_num = 1, num_TCR { if ((ranvec_TCR (postsyn_cell_num).gt.0.e0).and. \ (ranvec_TCR (postsyn_cell_num).le.noisepe_TCR )) then curr_TCR (135,postsyn_cell_num) = 0.4e0 ectr_TCR = ectr_TCR + 1 else curr_TCR (135,postsyn_cell_num) = 0.e0 endif } endif */ // hoc code for poisson process current injections: // synaptic pulse point processes (pulsesyn.mod) are used along with a netstim // to inject ectopic currents into the cells. weight = 1 // the weight is unused for the PulseSyn delay = 0 // delay is irrelevant (not applicable) for the // NetStim -> PulseSyn connection since it is poisson process // (except for the begining of the simulation) if (pmesg) print "creating ",num_TCR,"NetStim's for TCR cells" if (serial) { netstim_TCR_base = base_ } else { netstim_TCR_base = netstim_base_ } for postsyn_cell_num = 1, num_TCR { if (serial) { // add the PulseSyn to the cell postsyncell_ = cellobj(TCR_base+postsyn_cell_num) postsyncell_.comp[135] syn_ = new PulseSyn(0.5) postsyncell_.synlist.append(syn_) syn_.amp=0.4e0 // create and add the NetStim to the artificial cell and connect it to a cell cell_append(new S_NetStim(), 0, increment_spacer(),0) base_ = base_ + 1 // setting the netstim interval (time period) parameter (inverse of poisson process frequency) cellobj(netstim_TCR_base + postsyn_cell_num).pp.interval = 0.4 / noisepe_TCR // the connecting part nc_append(netstim_TCR_base + postsyn_cell_num, TCR_base + postsyn_cell_num, postsyncell_.synlist.count()-1, weight, delay) }else{ par_netstim_create(TCR_base+postsyn_cell_num, 135, 0.4e0, 0.4 / noisepe_TCR) } } delay = default_delay // ELSE IF (THISNO.EQ.13-4*debug) THEN // nRT // Handle TCR -> nRT // AMPA and NMDA ampa_weight = gAMPA_TCR_to_nRT nmda_weight = gNMDA_TCR_to_nRT // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nRT if (gidexist(nRT_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_TCR_to_nRT { // ith synapse on postsyn_cell_num j = map_TCR_to_nRT.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_TCR_to_nRT.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nRT_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_TCR_to_nRT // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, nRT_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_TCR_to_nRT // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(TCR_base + j, nRT_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } // *********************************************************** // Handle nRT -> nRT // GABA_A gaba_weight = gGABA_nRT_to_nRT for postsyn_cell_num = 1, num_nRT if (gidexist(nRT_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nRT_to_nRT { // ith synapse on postsyn_cell_num j = map_nRT_to_nRT.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nRT_to_nRT.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place GABA_A synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nRT_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new GABAA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauGABA1_nRT_to_nRT // there are two time constants in this gaba_a synapse if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn2_ = new GABAA(0.5) postsyncell_.synlist.append(syn2_) syn2_.tau = tauGABA2_nRT_to_nRT // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nRT_base + j, nRT_base + postsyn_cell_num, postsyncell_.synlist.count()-2, 0.56*gaba_weight, delay) nc_append(nRT_base + j, nRT_base + postsyn_cell_num, postsyncell_.synlist.count()-1, 0.44*gaba_weight, delay) } } // *********************************************************** // Handle nontuftRS -> nRT // AMPA and NMDA delay = cort_thal_delay ampa_weight = gAMPA_nontuftRS_to_nRT nmda_weight = gNMDA_nontuftRS_to_nRT // print "******** The connections to the first cell are printed for debugging" for postsyn_cell_num = 1, num_nRT if (gidexist(nRT_base+postsyn_cell_num)) { // loop over postsynaptic cells, postsyn_cell_num for i = 1, num_nontuftRS_to_nRT { // ith synapse on postsyn_cell_num j = map_nontuftRS_to_nRT.x(i,postsyn_cell_num) // j = presynaptic cell for ith syn to postsyn_cell_num k = com_nontuftRS_to_nRT.x(i,postsyn_cell_num) // k = compart. # in postsyn_cell_num for postsyn_cell_num's ith synapse // place AMPA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_ = cellobj(nRT_base+postsyn_cell_num) if (!section_exists("comp", k, postsyncell_)) { continue } postsyncell_.comp[k] syn_ = new AMPA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauAMPA_nontuftRS_to_nRT // connect to presynaptic cell: // arguments (presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, nRT_base + postsyn_cell_num, postsyncell_.synlist.count()-1, ampa_weight, delay) // place NMDA synapse in compartment k of postsynaptic cell postsyn_cell_num: postsyncell_.comp[k] syn_ = new NMDA(0.5) postsyncell_.synlist.append(syn_) syn_.tau = tauNMDA_nontuftRS_to_nRT // connect to presynaptic cell: // arguments ( presyn cell # , postsyn cell # , synapse # , weight , delay) nc_append(nontuftRS_base + j, nRT_base + postsyn_cell_num, postsyncell_.synlist.count()-1, nmda_weight, delay) } } delay = default_delay // *********************************************************** // Update outctr's and outtime tables. // This code is common to all the nodes. // This section adapted from supergj.f // NEURON: summary of FORTRAN code: /* The voltage traces were examined for spikes (thresh > 0 mV) and if found then a spike counter (outctr_cellname(postsyn_cell_num)) is incremented and the time for the spike is recorded in outtime_cellname(outctr_cellname(),postsyn_cell_num) An axon_refrac_time variable is used to judge when the next spike is possible (thresh >0 mV and delta_t > axon_refrac_time) Then various voltages and derived quantities are written to output files every tenth of a millisecond: NEURON code equivalents will store the quantities in vectors every tenth of a millisecond. A second program, vector_writer.hoc will write these vectors to files. Here is the FORTRAN: outrcd( 1) = time outrcd( 2) = v_suppyrRS(1,2) outrcd( 3) = v_suppyrRS(numcomp_suppyrRS,2) outrcd( 4) = v_suppyrRS(43,2) Here is the NEURON: */ /* objref t_vec t_vec = new Vector() {t_vec.record(&t,0.1)} // this will record the time at 0.1 ms intervals even though dt = 0.002 objref v_suppyrRS_1_2 // compartment 1 in cell 2 v_suppyrRS_1_2 = new Vector() {v_suppyrRS_1_2.record(&cellobj(2+suppyrRS_base).comp[1].v(0.5), 0.1)} objref v_suppyrRS_last_2 // last compartment cell 2 (this is a distal axon compartment) v_suppyrRS_last_2 = new Vector() {v_suppyrRS_last_2.record(&cellobj(2+suppyrRS_base).comp[numcomp_suppyrRS].v(0.5), 0.1)} objref v_suppyrRS_43_2 // compartment 43 in cell 2 (oblique dendrite?) v_suppyrRS_43_2 = new Vector() {v_suppyrRS_43_2.record(&cellobj(2+suppyrRS_base).comp[43].v(0.5), 0.1)} */ /* more FORTRAN network sampling output: z = 0.e0 for i = 1, num_suppyrRS { z = z - v_suppyrRS(1,i) } outrcd( 5) = z / dble(num_suppyrRS) // - av. cell somata z = 0.e0 for i = 1, numcomp_suppyrRS { z = z + gAMPA_suppyrRS(i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_suppyrRS { z = z + gNMDA_suppyrRS(i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_suppyrRS { z = z + gGABA_A_suppyrRS(i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_suppyrRS(1,3) outrcd(10) = v_suppyrRS(1,4) z = 0.e0 for i = 1, num_suppyrRS { if(v_suppyrRS(numcomp_suppyrRS,i) .gt. 0.e0) z = z + 1.e0 } outrcd(11) = z outrcd(12) = field_1mm_suppyrRS outrcd(13) = field_2mm_suppyrRS OPEN(11,FILE='GROUCHO110.suppyrRS') WRITE (11,FMT='(13F10.4)') (OUTRCD(I),I=1,13) else if (thisno.eq.1) then outrcd( 1) = time outrcd( 2) = v_suppyrFRB(1,2) outrcd( 3) = v_suppyrFRB(numcomp_suppyrFRB,2) outrcd( 4) = v_suppyrFRB(43,2) z = 0.e0 for i = 1, num_suppyrFRB { z = z - v_suppyrFRB(1,i) } outrcd( 5) = z / dble(num_suppyrFRB) // - av. cell somata z = 0.e0 for i = 1, numcomp_suppyrFRB { z = z + gAMPA_suppyrFRB(i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_suppyrFRB { z = z + gNMDA_suppyrFRB(i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_suppyrFRB { z = z + gGABA_A_suppyrFRB(i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_suppyrFRB(1,3) outrcd(10) = v_suppyrFRB(1,4) outrcd(11) = field_1mm_suppyrFRB outrcd(12) = field_2mm_suppyrFRB OPEN(12,FILE='GROUCHO110.suppyrFRB') WRITE (12,FMT='(12F10.4)') (OUTRCD(I),I=1,12) else if (thisno.eq.2) then outrcd( 1) = time outrcd( 2) = v_supbask (1,2) outrcd( 3) = v_supbask (numcomp_supbask,2) outrcd( 4) = v_supbask (43,2) z = 0.e0 for i = 1, num_supbask { z = z - v_supbask(1,i) } outrcd( 5) = z / dble(num_supbask ) // - av. cell somata z = 0.e0 for i = 1, numcomp_supbask { z = z + gAMPA_supbask (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_supbask { z = z + gNMDA_supbask (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_supbask { z = z + gGABA_A_supbask (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_supbask (1,3) outrcd(10) = v_supbask (1,4) OPEN(13,FILE='GROUCHO110.supbask') WRITE (13,FMT='(10F10.4)') (OUTRCD(I),I=1,10) else if (thisno.eq.3) then outrcd( 1) = time outrcd( 2) = v_supaxax (1,2) outrcd( 3) = v_supaxax (numcomp_supaxax ,2) outrcd( 4) = v_supaxax (43,2) z = 0.e0 for i = 1, num_supaxax { z = z - v_supaxax(1,i) } outrcd( 5) = z / dble(num_supaxax ) // -av. cell somata z = 0.e0 for i = 1, numcomp_supaxax { z = z + gAMPA_supaxax (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_supaxax { z = z + gNMDA_supaxax (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_supaxax { z = z + gGABA_A_supaxax (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_supaxax (1,3) outrcd(10) = v_supaxax (1,4) OPEN(14,FILE='GROUCHO110.supaxax') WRITE (14,FMT='(10F10.4)') (OUTRCD(I),I=1,10) else if (thisno.eq.4) then outrcd( 1) = time outrcd( 2) = v_supLTS (1,2) outrcd( 3) = v_supLTS (numcomp_supLTS ,2) outrcd( 4) = v_supLTS (43,2) z = 0.e0 for i = 1, num_supLTS { z = z - v_supLTS(1,i) } outrcd( 5) = z / dble(num_supLTS ) // -av. cell somata z = 0.e0 for i = 1, numcomp_supLTS { z = z + gAMPA_supLTS (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_supLTS { z = z + gNMDA_supLTS (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_supLTS { z = z + gGABA_A_supLTS (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_supLTS (1,3) outrcd(10) = v_supLTS (1,4) OPEN(15,FILE='GROUCHO110.supLTS') WRITE (15,FMT='(10F10.4)') (OUTRCD(I),I=1,10) else if (thisno.eq.5) then outrcd( 1) = time outrcd( 2) = v_spinstell(1,2) outrcd( 3) = v_spinstell(numcomp_spinstell,2) outrcd( 4) = v_spinstell(43,2) z = 0.e0 for i = 1, num_spinstell { z = z - v_spinstell(1,i) } outrcd( 5) = z / dble(num_spinstell) // -av. cell somata z = 0.e0 for i = 1, numcomp_spinstell { z = z + gAMPA_spinstell(i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_spinstell { z = z + gNMDA_spinstell(i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_spinstell { z = z + gGABA_A_spinstell(i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_spinstell(1,3) outrcd(10) = v_spinstell(1,4) OPEN(16,FILE='GROUCHO110.spinstell') WRITE (16,FMT='(10F10.4)') (OUTRCD(I),I=1,10) else if (thisno.eq.11+10*debug) then outrcd( 1) = time outrcd( 2) = v_tuftIB (1,4) outrcd( 3) = v_tuftIB (numcomp_tuftIB ,4) outrcd( 4) = v_tuftIB (43,4) z = 0.e0 for i = 1, num_tuftIB { z = z - v_tuftIB(1,i) } outrcd( 5) = z / dble(num_tuftIB ) // -av. cell somata z = 0.e0 for i = 1, numcomp_tuftIB { z = z + gAMPA_tuftIB (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_tuftIB { z = z + gNMDA_tuftIB (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_tuftIB { z = z + gGABA_A_tuftIB (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_tuftIB (1,3) outrcd(10) = v_tuftIB (1,2) outrcd(11) = field_1mm_tuftIB outrcd(12) = field_2mm_tuftIB outrcd(13) = v_tuftIB (numcomp_tuftIB, 2) outrcd(14) = v_tuftIB (1, 8) outrcd(15) = v_tuftIB (numcomp_tuftIB, 8) outrcd(16) = v_tuftIB (1, 9) outrcd(17) = v_tuftIB (numcomp_tuftIB, 9) outrcd(18) = v_tuftIB (1, 10) outrcd(19) = v_tuftIB (numcomp_tuftIB, 10) OPEN(17,FILE='GROUCHO110.tuftIB') WRITE (17,FMT='(19F10.4)') (OUTRCD(I),I=1,19) else if (thisno.eq.6+10*debug) then outrcd( 1) = time outrcd( 2) = v_tuftRS (1,2) outrcd( 3) = v_tuftRS (numcomp_tuftRS ,2) outrcd( 4) = v_tuftRS (43,2) z = 0.e0 for i = 1, num_tuftRS { z = z - v_tuftRS(1,i) } outrcd( 5) = z / dble(num_tuftRS ) // -av. cell somata z = 0.e0 for i = 1, numcomp_tuftRS { z = z + gAMPA_tuftRS (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_tuftRS { z = z + gNMDA_tuftRS (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_tuftRS { z = z + gGABA_A_tuftRS (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_tuftRS (1,3) outrcd(10) = v_tuftRS (1,4) outrcd(11) = field_1mm_tuftRS outrcd(12) = field_2mm_tuftRS OPEN(18,FILE='GROUCHO110.tuftRS') WRITE (18,FMT='(12F10.4)') (OUTRCD(I),I=1,12) else if (thisno.eq.8+10*debug) then outrcd( 1) = time outrcd( 2) = v_nontuftRS(1,2) outrcd( 3) = v_nontuftRS(numcomp_nontuftRS,2) outrcd( 4) = v_nontuftRS(43,2) z = 0.e0 for i = 1, num_nontuftRS { z = z - v_nontuftRS(1,i) } outrcd( 5) = z / dble(num_nontuftRS) // -av. cell somata z = 0.e0 for i = 1, numcomp_nontuftRS { z = z + gAMPA_nontuftRS(i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_nontuftRS { z = z + gNMDA_nontuftRS(i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_nontuftRS { z = z + gGABA_A_nontuftRS(i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_nontuftRS(1,3) outrcd(10) = v_nontuftRS(1,4) outrcd(11) = field_1mm_nontuftRS outrcd(12) = field_2mm_nontuftRS OPEN(19,FILE='GROUCHO110.nontuftRS') WRITE (19,FMT='(12F10.4)') (OUTRCD(I),I=1,12) else if (thisno.eq.9-3*debug) then outrcd( 1) = time outrcd( 2) = v_deepbask (1,2) outrcd( 3) = v_deepbask (numcomp_deepbask ,2) outrcd( 4) = v_deepbask (43,2) z = 0.e0 for i = 1, num_deepbask { z = z - v_deepbask(1,i) } outrcd( 5) = z / dble(num_deepbask ) // -av. cell somata z = 0.e0 for i = 1, numcomp_deepbask { z = z + gAMPA_deepbask (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_deepbask { z = z + gNMDA_deepbask (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_deepbask { z = z + gGABA_A_deepbask (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_deepbask (1,3) outrcd(10) = v_deepbask (1,4) OPEN(20,FILE='GROUCHO110.deepbask') WRITE (20,FMT='(10F10.4)') (OUTRCD(I),I=1,10) else if (thisno.eq.10-3*debug) then outrcd( 1) = time outrcd( 2) = v_deepaxax (1,2) outrcd( 3) = v_deepaxax (numcomp_deepaxax ,2) outrcd( 4) = v_deepaxax (43,2) z = 0.e0 for i = 1, num_deepaxax { z = z - v_deepaxax(1,i) } outrcd( 5) = z / dble(num_deepaxax ) // -av. cell somata z = 0.e0 for i = 1, numcomp_deepaxax { z = z + gAMPA_deepaxax (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_deepaxax { z = z + gNMDA_deepaxax (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_deepaxax { z = z + gGABA_A_deepaxax (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_deepaxax (1,3) outrcd(10) = v_deepaxax (1,4) OPEN(21,FILE='GROUCHO110.deepaxax') WRITE (21,FMT='(10F10.4)') (OUTRCD(I),I=1,10) else if (thisno.eq.7-3*debug) then outrcd( 1) = time outrcd( 2) = v_deepLTS (1,2) outrcd( 3) = v_deepLTS (numcomp_deepLTS ,2) outrcd( 4) = v_deepLTS (43,2) z = 0.e0 for i = 1, num_deepLTS { z = z - v_deepLTS(1,i) } outrcd( 5) = z / dble(num_deepLTS ) // -av. cell somata z = 0.e0 for i = 1, numcomp_deepLTS { z = z + gAMPA_deepLTS (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_deepLTS { z = z + gNMDA_deepLTS (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_deepLTS { z = z + gGABA_A_deepLTS (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_deepLTS (1,3) outrcd(10) = v_deepLTS (1,4) OPEN(22,FILE='GROUCHO110.deepLTS') WRITE (22,FMT='(10F10.4)') (OUTRCD(I),I=1,10) else if (thisno.eq.12+10*debug) then outrcd( 1) = time outrcd( 2) = v_TCR (1,2) outrcd( 3) = v_TCR (numcomp_TCR ,2) outrcd( 4) = v_TCR (43,2) z = 0.e0 for i = 1, num_TCR { z = z - v_TCR(1,i) } outrcd( 5) = z / dble(num_TCR ) // -av. cell somata z = 0.e0 for i = 1, numcomp_TCR { z = z + gAMPA_TCR (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_TCR { z = z + gNMDA_TCR (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_TCR { z = z + gGABA_A_TCR (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_TCR (1,3) outrcd(10) = v_TCR (1,4) z = 0.e0 for i = 1, num_TCR { if(v_TCR (numcomp_TCR ,i) .gt. 0.e0) z = z + 1.e0 } outrcd(11) = z OPEN(23,FILE='GROUCHO110.TCR') WRITE (23,FMT='(11F10.4)') (OUTRCD(I),I=1,11) else if (thisno.eq.13-4*debug) then outrcd( 1) = time outrcd( 2) = v_nRT (1,2) outrcd( 3) = v_nRT (numcomp_nRT ,2) outrcd( 4) = v_nRT (43,2) z = 0.e0 for i = 1, num_nRT { z = z - v_nRT(1,i) } outrcd( 5) = z / dble(num_nRT ) // -av. cell somata z = 0.e0 for i = 1, numcomp_nRT { z = z + gAMPA_nRT (i,2) } outrcd( 6) = z * 1000.e0 // total AMPA cell 2 z = 0.e0 for i = 1, numcomp_nRT { z = z + gNMDA_nRT (i,2) } outrcd( 7) = z * 1000.e0 // total NMDA cell 2 z = 0.e0 for i = 1, numcomp_nRT { z = z + gGABA_A_nRT (i,2) } outrcd( 8) = z * 1000.e0 // total GABA-A, cell 2 outrcd( 9) = v_nRT (1,3) outrcd(10) = v_nRT (1,4) z = 0.e0 for i = 1, num_nRT { if(v_nRT (numcomp_nRT ,i) .gt. 0.e0) z = z + 1.e0 } outrcd(11) = z OPEN(24,FILE='GROUCHO110.nRT') WRITE (24,FMT='(11F10.4)') (OUTRCD(I),I=1,11) /* comment catcher */ //system("date >> time_groucho_hoc.txt") if (pmesg) print "at end"