: Shunt current, voltage dependent : Bob Calin-Jageman 9/20/2002 : This model implements a voltage-dependent, non-inactivating shunt current : as described by : Getting, 1989 and utilized by Lieb and Frost, 1998. : : : Created by Bob Calin-Jageman : : Created 9/20/2002 : Modified 9/20/2002 : : Mathcheck - 9/31/2002 : Unitscheck - 9/31/2002 (though G not literal mS) : : Explanation : Shunt current is equal to G * m * h * (V-Erev) : G - weight : m - activation level : h - inactivation level - always 1 : v - current membrane potential in mv : Erev - reversal potential for the current : : m, the activation level changes as dm/dt = (m-ss - m) / tau-m : where m-ss is the steady-state activation determined by : m-ss = 1/( 1 + e ^((v+b)/c) ) : : : References : Getting, P.A. (1989) "Reconstruction of small neural networks" in : Methods in Neuronal Modeling: From Synapses to Networks (1st ed), Kock & Segev : eds, MIT Press. : Lieb JR & Frost WN (1997) "Realistic Simulation of the Aplysia Siphon : Withdrawal Reflex Circuit: Roles of Circuit Elements in Producing Motor Output" : p. 1249 */ : NEURON { POINT_PROCESS shunt NONSPECIFIC_CURRENT i RANGE G, erev, Bm, Cm, Tm, Bh, Ch, Th, mmax, hmax, vstart } UNITS { (mS) = (microsiemens) (mV) = (millivolt) (nA) = (nanoamp) } PARAMETER { G = .28 (microsiemens) erev = -56.9 (mV) Bm (1) Cm (1) Tm (1) Bh (1) Ch (1) Th (1) mmax (1) hmax (1) vstart (mv) } ASSIGNED { i (nA) v (mV) } STATE { m (1) h (1)} BREAKPOINT { mmax = 1/(1+exp((v+Bm)/Cm)) hmax = 1/(1+exp((v+Bh)/Ch)) SOLVE state METHOD cnexp i = G * m * h * (v - erev) } INITIAL { m = 1/(1+exp((vstart+Bm)/Cm)) h = 1/(1+exp((vstart+Bh)/Ch)) } DERIVATIVE state { m' = (mmax - m)/Tm h' = (hmax - h)/Th }