: $Id: Ih_old.mod,v 1.6 1995/02/16 22:18:58 ethomas Exp $ TITLE anomalous rectifier channel COMMENT : : Anomalous Rectifier Ih - cation (Na/K) channel : Differential equations : : Model of double activation (Destexhe & Babloyantz, 1992) : Activation functions were fitted from : McCormick & Pape, J. Physiol. 431: 291, 1990. : and Soltesz et al, J. Physiol. 441: 175, 1991. : : Kinetic model of calcium-induced shift in the activation of Ih channels : Model of A. Destexhe, 1992, inspired from the dependence of If on calcium : in heart cells (Harigawa & Hirishawa, J. Physiol. 409: 121, 1989) : : ACTIVATE BINDING MODEL : : - binding of Ca on S and F channels (VERSION 2: nexp binding sites) : - Ca binds on activated gates (rate constants k1 and k2) : idem before: : s0 (closed) <-> s1 (open) ; rate cst alpha1,beta1 : f0 (closed) <-> f1 (open) ; rate cst alpha1,beta1 : new: : s1 (open) + Ca <-> s2 (open) ; rate cst k1,k2 : f1 (open) + Ca <-> f2 (open) ; rate cst k1,k2 : : - this suffies to account for shift of Ih activation with calcium : (no need of other mechanism - or other time constants than k1,k2) : : PARAMETERS: : : VERSION 2: reformulation of parameters k1,k2 into k2 and cac. : cac = (k2/k1)^(1/nexp) = half activation calcium dependence. : - k2: this rate constant is the inverse of the real time constant of : the binding of Ca to Ih channel. (0.001 to 0.0001 ms-1) : - cac: the half activation must be adapted to calcium dynamics of : the cell. Usually, cac = 1e-4 mM. : - nexp:number of sites of calcium on h-channels, nexp=2 here. : : MODIF: addition of control variables (June 11 93) : : Written by Alain Destexhe, Salk Institute, Aug 1992 : ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { SUFFIX iar USEION other WRITE iother VALENCE 1 USEION ca READ cai RANGE ghbar, gh, i GLOBAL k2, cac, nexp, h_inf, tau_s, tau_f, controls, controlf } UNITS { (molar) = (1/liter) (mM) = (millimolar) (mA) = (milliamp) (mV) = (millivolt) (msM) = (ms mM) } PARAMETER { eh = -43 (mV) celsius = 36 (degC) ghbar = .0001 (mho/cm2) cac = 1e-4 (mM) : half-activation of calcium dependence k2 = 0.001 (1/ms) : inverse of time constant nexp = 2 : number of binding sites controls = 1 : control of variable s (0=no s1, s2) controlf = 1 : control of variable f (0=no f1, f2) } STATE { s1 s2 f1 f2 } ASSIGNED { v (mV) cai (mM) i (mA/cm2) iother (mA/cm2) gh (mho/cm2) h_inf tau_s (ms) tau_f (ms) alpha1 (1/ms) alpha2 (1/ms) beta1 (1/ms) beta2 (1/ms) kk (1/ms) fderiv (1/ms) tadj } BREAKPOINT { SOLVE states METHOD runge if(controls == 0) { gh = ghbar * (f1+f2) } else if(controlf == 0) { gh = ghbar * (s1+s2) } else { gh = ghbar * (s1+s2) * (f1+f2) } i = gh * (v - eh) iother = i } DERIVATIVE states { LOCAL s0,f0 evaluate_fct(v) s0 = 1 - s1 - s2 f0 = 1 - f1 - f2 kk = k2 * (5e-5/cac)^nexp fderiv = kk*s1 - k2*s2 s1' = alpha1*s0 - beta1*s1 - fderiv s2' = fderiv fderiv = kk*f1 - k2*f2 f1' = alpha2*f0 - beta2*f1 - fderiv f2' = fderiv } UNITSOFF INITIAL { : : Experiments of Coulter et al were at 36 deg.C : Q10 is assumed equal to 3 : tadj = 3.0 ^ ((celsius-36)/10) evaluate_fct(v) kk = k2 * (cai/cac)^nexp s1 = alpha1*k2/(alpha1*kk + alpha1*k2 + beta1*k2) s2 = alpha1*kk/(alpha1*kk + alpha1*k2 + beta1*k2) f1 = alpha2*k2/(alpha2*kk + alpha2*k2 + beta2*k2) f2 = alpha2*kk/(alpha2*kk + alpha2*k2 + beta2*k2) } PROCEDURE evaluate_fct(v (mV)) { h_inf = 1 / ( 1 + exp((v+68.9)/6.5) ) : sigmoide "square root" tau_s = exp((v+183.6)/15.24) / tadj : version J neuro tau_f = exp((v+158.6)/11.2) / ( 1 + exp((v+75)/5.5) ) / tadj alpha1 = controls * h_inf / tau_s beta1 = ( 1 - h_inf ) / tau_s alpha2 = controlf * h_inf / tau_f beta2 = ( 1 - h_inf ) / tau_f } UNITSON